|
|
|
|
|
""" |
|
Reference: |
|
- [graphrag](https://github.com/microsoft/graphrag) |
|
""" |
|
|
|
import logging |
|
import re |
|
from typing import Any, Callable |
|
from dataclasses import dataclass |
|
import tiktoken |
|
|
|
from graphrag.general.extractor import Extractor, ENTITY_EXTRACTION_MAX_GLEANINGS, DEFAULT_ENTITY_TYPES |
|
from graphrag.general.graph_prompt import GRAPH_EXTRACTION_PROMPT, CONTINUE_PROMPT, LOOP_PROMPT |
|
from graphrag.utils import ErrorHandlerFn, perform_variable_replacements |
|
from rag.llm.chat_model import Base as CompletionLLM |
|
import networkx as nx |
|
from rag.utils import num_tokens_from_string |
|
|
|
DEFAULT_TUPLE_DELIMITER = "<|>" |
|
DEFAULT_RECORD_DELIMITER = "##" |
|
DEFAULT_COMPLETION_DELIMITER = "<|COMPLETE|>" |
|
|
|
|
|
@dataclass |
|
class GraphExtractionResult: |
|
"""Unipartite graph extraction result class definition.""" |
|
|
|
output: nx.Graph |
|
source_docs: dict[Any, Any] |
|
|
|
|
|
class GraphExtractor(Extractor): |
|
"""Unipartite graph extractor class definition.""" |
|
|
|
_join_descriptions: bool |
|
_tuple_delimiter_key: str |
|
_record_delimiter_key: str |
|
_entity_types_key: str |
|
_input_text_key: str |
|
_completion_delimiter_key: str |
|
_entity_name_key: str |
|
_input_descriptions_key: str |
|
_extraction_prompt: str |
|
_summarization_prompt: str |
|
_loop_args: dict[str, Any] |
|
_max_gleanings: int |
|
_on_error: ErrorHandlerFn |
|
|
|
def __init__( |
|
self, |
|
llm_invoker: CompletionLLM, |
|
language: str | None = "English", |
|
entity_types: list[str] | None = None, |
|
get_entity: Callable | None = None, |
|
set_entity: Callable | None = None, |
|
get_relation: Callable | None = None, |
|
set_relation: Callable | None = None, |
|
tuple_delimiter_key: str | None = None, |
|
record_delimiter_key: str | None = None, |
|
input_text_key: str | None = None, |
|
entity_types_key: str | None = None, |
|
completion_delimiter_key: str | None = None, |
|
join_descriptions=True, |
|
max_gleanings: int | None = None, |
|
on_error: ErrorHandlerFn | None = None, |
|
): |
|
super().__init__(llm_invoker, language, entity_types, get_entity, set_entity, get_relation, set_relation) |
|
"""Init method definition.""" |
|
|
|
self._llm = llm_invoker |
|
self._join_descriptions = join_descriptions |
|
self._input_text_key = input_text_key or "input_text" |
|
self._tuple_delimiter_key = tuple_delimiter_key or "tuple_delimiter" |
|
self._record_delimiter_key = record_delimiter_key or "record_delimiter" |
|
self._completion_delimiter_key = ( |
|
completion_delimiter_key or "completion_delimiter" |
|
) |
|
self._entity_types_key = entity_types_key or "entity_types" |
|
self._extraction_prompt = GRAPH_EXTRACTION_PROMPT |
|
self._max_gleanings = ( |
|
max_gleanings |
|
if max_gleanings is not None |
|
else ENTITY_EXTRACTION_MAX_GLEANINGS |
|
) |
|
self._on_error = on_error or (lambda _e, _s, _d: None) |
|
self.prompt_token_count = num_tokens_from_string(self._extraction_prompt) |
|
|
|
|
|
encoding = tiktoken.get_encoding("cl100k_base") |
|
yes = encoding.encode("YES") |
|
no = encoding.encode("NO") |
|
self._loop_args = {"logit_bias": {yes[0]: 100, no[0]: 100}, "max_tokens": 1} |
|
|
|
|
|
self._prompt_variables = { |
|
"entity_types": entity_types, |
|
self._tuple_delimiter_key: DEFAULT_TUPLE_DELIMITER, |
|
self._record_delimiter_key: DEFAULT_RECORD_DELIMITER, |
|
self._completion_delimiter_key: DEFAULT_COMPLETION_DELIMITER, |
|
self._entity_types_key: ",".join(DEFAULT_ENTITY_TYPES), |
|
} |
|
|
|
def _process_single_content(self, |
|
chunk_key_dp: tuple[str, str] |
|
): |
|
token_count = 0 |
|
|
|
chunk_key = chunk_key_dp[0] |
|
content = chunk_key_dp[1] |
|
variables = { |
|
**self._prompt_variables, |
|
self._input_text_key: content, |
|
} |
|
try: |
|
gen_conf = {"temperature": 0.3} |
|
hint_prompt = perform_variable_replacements(self._extraction_prompt, variables=variables) |
|
response = self._chat(hint_prompt, [{"role": "user", "content": "Output:"}], gen_conf) |
|
token_count += num_tokens_from_string(hint_prompt + response) |
|
|
|
results = response or "" |
|
history = [{"role": "system", "content": hint_prompt}, {"role": "assistant", "content": response}] |
|
|
|
|
|
for i in range(self._max_gleanings): |
|
text = perform_variable_replacements(CONTINUE_PROMPT, history=history, variables=variables) |
|
history.append({"role": "user", "content": text}) |
|
response = self._chat("", history, gen_conf) |
|
token_count += num_tokens_from_string("\n".join([m["content"] for m in history]) + response) |
|
results += response or "" |
|
|
|
|
|
if i >= self._max_gleanings - 1: |
|
break |
|
history.append({"role": "assistant", "content": response}) |
|
history.append({"role": "user", "content": LOOP_PROMPT}) |
|
continuation = self._chat("", history, self._loop_args) |
|
token_count += num_tokens_from_string("\n".join([m["content"] for m in history]) + response) |
|
if continuation != "YES": |
|
break |
|
|
|
record_delimiter = variables.get(self._record_delimiter_key, DEFAULT_RECORD_DELIMITER) |
|
tuple_delimiter = variables.get(self._tuple_delimiter_key, DEFAULT_TUPLE_DELIMITER) |
|
records = [re.sub(r"^\(|\)$", "", r.strip()) for r in results.split(record_delimiter)] |
|
records = [r for r in records if r.strip()] |
|
maybe_nodes, maybe_edges = self._entities_and_relations(chunk_key, records, tuple_delimiter) |
|
return maybe_nodes, maybe_edges, token_count |
|
except Exception as e: |
|
logging.exception("error extracting graph") |
|
return e, None, None |
|
|
|
|
|
|
|
|