ragflow / graphrag /general /graph_extractor.py
Kevin Hu
Light GraphRAG (#4585)
47ec63e
raw
history blame
6.32 kB
# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
"""
Reference:
- [graphrag](https://github.com/microsoft/graphrag)
"""
import logging
import re
from typing import Any, Callable
from dataclasses import dataclass
import tiktoken
from graphrag.general.extractor import Extractor, ENTITY_EXTRACTION_MAX_GLEANINGS, DEFAULT_ENTITY_TYPES
from graphrag.general.graph_prompt import GRAPH_EXTRACTION_PROMPT, CONTINUE_PROMPT, LOOP_PROMPT
from graphrag.utils import ErrorHandlerFn, perform_variable_replacements
from rag.llm.chat_model import Base as CompletionLLM
import networkx as nx
from rag.utils import num_tokens_from_string
DEFAULT_TUPLE_DELIMITER = "<|>"
DEFAULT_RECORD_DELIMITER = "##"
DEFAULT_COMPLETION_DELIMITER = "<|COMPLETE|>"
@dataclass
class GraphExtractionResult:
"""Unipartite graph extraction result class definition."""
output: nx.Graph
source_docs: dict[Any, Any]
class GraphExtractor(Extractor):
"""Unipartite graph extractor class definition."""
_join_descriptions: bool
_tuple_delimiter_key: str
_record_delimiter_key: str
_entity_types_key: str
_input_text_key: str
_completion_delimiter_key: str
_entity_name_key: str
_input_descriptions_key: str
_extraction_prompt: str
_summarization_prompt: str
_loop_args: dict[str, Any]
_max_gleanings: int
_on_error: ErrorHandlerFn
def __init__(
self,
llm_invoker: CompletionLLM,
language: str | None = "English",
entity_types: list[str] | None = None,
get_entity: Callable | None = None,
set_entity: Callable | None = None,
get_relation: Callable | None = None,
set_relation: Callable | None = None,
tuple_delimiter_key: str | None = None,
record_delimiter_key: str | None = None,
input_text_key: str | None = None,
entity_types_key: str | None = None,
completion_delimiter_key: str | None = None,
join_descriptions=True,
max_gleanings: int | None = None,
on_error: ErrorHandlerFn | None = None,
):
super().__init__(llm_invoker, language, entity_types, get_entity, set_entity, get_relation, set_relation)
"""Init method definition."""
# TODO: streamline construction
self._llm = llm_invoker
self._join_descriptions = join_descriptions
self._input_text_key = input_text_key or "input_text"
self._tuple_delimiter_key = tuple_delimiter_key or "tuple_delimiter"
self._record_delimiter_key = record_delimiter_key or "record_delimiter"
self._completion_delimiter_key = (
completion_delimiter_key or "completion_delimiter"
)
self._entity_types_key = entity_types_key or "entity_types"
self._extraction_prompt = GRAPH_EXTRACTION_PROMPT
self._max_gleanings = (
max_gleanings
if max_gleanings is not None
else ENTITY_EXTRACTION_MAX_GLEANINGS
)
self._on_error = on_error or (lambda _e, _s, _d: None)
self.prompt_token_count = num_tokens_from_string(self._extraction_prompt)
# Construct the looping arguments
encoding = tiktoken.get_encoding("cl100k_base")
yes = encoding.encode("YES")
no = encoding.encode("NO")
self._loop_args = {"logit_bias": {yes[0]: 100, no[0]: 100}, "max_tokens": 1}
# Wire defaults into the prompt variables
self._prompt_variables = {
"entity_types": entity_types,
self._tuple_delimiter_key: DEFAULT_TUPLE_DELIMITER,
self._record_delimiter_key: DEFAULT_RECORD_DELIMITER,
self._completion_delimiter_key: DEFAULT_COMPLETION_DELIMITER,
self._entity_types_key: ",".join(DEFAULT_ENTITY_TYPES),
}
def _process_single_content(self,
chunk_key_dp: tuple[str, str]
):
token_count = 0
chunk_key = chunk_key_dp[0]
content = chunk_key_dp[1]
variables = {
**self._prompt_variables,
self._input_text_key: content,
}
try:
gen_conf = {"temperature": 0.3}
hint_prompt = perform_variable_replacements(self._extraction_prompt, variables=variables)
response = self._chat(hint_prompt, [{"role": "user", "content": "Output:"}], gen_conf)
token_count += num_tokens_from_string(hint_prompt + response)
results = response or ""
history = [{"role": "system", "content": hint_prompt}, {"role": "assistant", "content": response}]
# Repeat to ensure we maximize entity count
for i in range(self._max_gleanings):
text = perform_variable_replacements(CONTINUE_PROMPT, history=history, variables=variables)
history.append({"role": "user", "content": text})
response = self._chat("", history, gen_conf)
token_count += num_tokens_from_string("\n".join([m["content"] for m in history]) + response)
results += response or ""
# if this is the final glean, don't bother updating the continuation flag
if i >= self._max_gleanings - 1:
break
history.append({"role": "assistant", "content": response})
history.append({"role": "user", "content": LOOP_PROMPT})
continuation = self._chat("", history, self._loop_args)
token_count += num_tokens_from_string("\n".join([m["content"] for m in history]) + response)
if continuation != "YES":
break
record_delimiter = variables.get(self._record_delimiter_key, DEFAULT_RECORD_DELIMITER)
tuple_delimiter = variables.get(self._tuple_delimiter_key, DEFAULT_TUPLE_DELIMITER)
records = [re.sub(r"^\(|\)$", "", r.strip()) for r in results.split(record_delimiter)]
records = [r for r in records if r.strip()]
maybe_nodes, maybe_edges = self._entities_and_relations(chunk_key, records, tuple_delimiter)
return maybe_nodes, maybe_edges, token_count
except Exception as e:
logging.exception("error extracting graph")
return e, None, None