Kevin Hu
Tagging (#4426)
6c8312a
raw
history blame
46.9 kB
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import pathlib
import datetime
from api.db.services.dialog_service import keyword_extraction, label_question
from rag.app.qa import rmPrefix, beAdoc
from rag.nlp import rag_tokenizer
from api.db import LLMType, ParserType
from api.db.services.llm_service import TenantLLMService, LLMBundle
from api import settings
import xxhash
import re
from api.utils.api_utils import token_required
from api.db.db_models import Task
from api.db.services.task_service import TaskService, queue_tasks
from api.utils.api_utils import server_error_response
from api.utils.api_utils import get_result, get_error_data_result
from io import BytesIO
from flask import request, send_file
from api.db import FileSource, TaskStatus, FileType
from api.db.db_models import File
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.utils.api_utils import construct_json_result, get_parser_config
from rag.nlp import search
from rag.utils import rmSpace
from rag.utils.storage_factory import STORAGE_IMPL
from pydantic import BaseModel, Field, validator
MAXIMUM_OF_UPLOADING_FILES = 256
class Chunk(BaseModel):
id: str = ""
content: str = ""
document_id: str = ""
docnm_kwd: str = ""
important_keywords: list = Field(default_factory=list)
questions: list = Field(default_factory=list)
question_tks: str = ""
image_id: str = ""
available: bool = True
positions: list[list[int]] = Field(default_factory=list)
@validator('positions')
def validate_positions(cls, value):
for sublist in value:
if len(sublist) != 5:
raise ValueError("Each sublist in positions must have a length of 5")
return value
@manager.route("/datasets/<dataset_id>/documents", methods=["POST"]) # noqa: F821
@token_required
def upload(dataset_id, tenant_id):
"""
Upload documents to a dataset.
---
tags:
- Documents
security:
- ApiKeyAuth: []
parameters:
- in: path
name: dataset_id
type: string
required: true
description: ID of the dataset.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
- in: formData
name: file
type: file
required: true
description: Document files to upload.
responses:
200:
description: Successfully uploaded documents.
schema:
type: object
properties:
data:
type: array
items:
type: object
properties:
id:
type: string
description: Document ID.
name:
type: string
description: Document name.
chunk_count:
type: integer
description: Number of chunks.
token_count:
type: integer
description: Number of tokens.
dataset_id:
type: string
description: ID of the dataset.
chunk_method:
type: string
description: Chunking method used.
run:
type: string
description: Processing status.
"""
if "file" not in request.files:
return get_error_data_result(
message="No file part!", code=settings.RetCode.ARGUMENT_ERROR
)
file_objs = request.files.getlist("file")
for file_obj in file_objs:
if file_obj.filename == "":
return get_result(
message="No file selected!", code=settings.RetCode.ARGUMENT_ERROR
)
'''
# total size
total_size = 0
for file_obj in file_objs:
file_obj.seek(0, os.SEEK_END)
total_size += file_obj.tell()
file_obj.seek(0)
MAX_TOTAL_FILE_SIZE = 10 * 1024 * 1024
if total_size > MAX_TOTAL_FILE_SIZE:
return get_result(
message=f"Total file size exceeds 10MB limit! ({total_size / (1024 * 1024):.2f} MB)",
code=settings.RetCode.ARGUMENT_ERROR,
)
'''
e, kb = KnowledgebaseService.get_by_id(dataset_id)
if not e:
raise LookupError(f"Can't find the dataset with ID {dataset_id}!")
err, files = FileService.upload_document(kb, file_objs, tenant_id)
if err:
return get_result(message="\n".join(err), code=settings.RetCode.SERVER_ERROR)
# rename key's name
renamed_doc_list = []
for file in files:
doc = file[0]
key_mapping = {
"chunk_num": "chunk_count",
"kb_id": "dataset_id",
"token_num": "token_count",
"parser_id": "chunk_method",
}
renamed_doc = {}
for key, value in doc.items():
new_key = key_mapping.get(key, key)
renamed_doc[new_key] = value
renamed_doc["run"] = "UNSTART"
renamed_doc_list.append(renamed_doc)
return get_result(data=renamed_doc_list)
@manager.route("/datasets/<dataset_id>/documents/<document_id>", methods=["PUT"]) # noqa: F821
@token_required
def update_doc(tenant_id, dataset_id, document_id):
"""
Update a document within a dataset.
---
tags:
- Documents
security:
- ApiKeyAuth: []
parameters:
- in: path
name: dataset_id
type: string
required: true
description: ID of the dataset.
- in: path
name: document_id
type: string
required: true
description: ID of the document to update.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
- in: body
name: body
description: Document update parameters.
required: true
schema:
type: object
properties:
name:
type: string
description: New name of the document.
parser_config:
type: object
description: Parser configuration.
chunk_method:
type: string
description: Chunking method.
responses:
200:
description: Document updated successfully.
schema:
type: object
"""
req = request.json
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(message="You don't own the dataset.")
doc = DocumentService.query(kb_id=dataset_id, id=document_id)
if not doc:
return get_error_data_result(message="The dataset doesn't own the document.")
doc = doc[0]
if "chunk_count" in req:
if req["chunk_count"] != doc.chunk_num:
return get_error_data_result(message="Can't change `chunk_count`.")
if "token_count" in req:
if req["token_count"] != doc.token_num:
return get_error_data_result(message="Can't change `token_count`.")
if "progress" in req:
if req["progress"] != doc.progress:
return get_error_data_result(message="Can't change `progress`.")
if "name" in req and req["name"] != doc.name:
if (
pathlib.Path(req["name"].lower()).suffix
!= pathlib.Path(doc.name.lower()).suffix
):
return get_result(
message="The extension of file can't be changed",
code=settings.RetCode.ARGUMENT_ERROR,
)
for d in DocumentService.query(name=req["name"], kb_id=doc.kb_id):
if d.name == req["name"]:
return get_error_data_result(
message="Duplicated document name in the same dataset."
)
if not DocumentService.update_by_id(document_id, {"name": req["name"]}):
return get_error_data_result(message="Database error (Document rename)!")
informs = File2DocumentService.get_by_document_id(document_id)
if informs:
e, file = FileService.get_by_id(informs[0].file_id)
FileService.update_by_id(file.id, {"name": req["name"]})
if "parser_config" in req:
DocumentService.update_parser_config(doc.id, req["parser_config"])
if "chunk_method" in req:
valid_chunk_method = {
"naive",
"manual",
"qa",
"table",
"paper",
"book",
"laws",
"presentation",
"picture",
"one",
"knowledge_graph",
"email",
"tag"
}
if req.get("chunk_method") not in valid_chunk_method:
return get_error_data_result(
f"`chunk_method` {req['chunk_method']} doesn't exist"
)
if doc.parser_id.lower() == req["chunk_method"].lower():
return get_result()
if doc.type == FileType.VISUAL or re.search(r"\.(ppt|pptx|pages)$", doc.name):
return get_error_data_result(message="Not supported yet!")
e = DocumentService.update_by_id(
doc.id,
{
"parser_id": req["chunk_method"],
"progress": 0,
"progress_msg": "",
"run": TaskStatus.UNSTART.value,
},
)
if not e:
return get_error_data_result(message="Document not found!")
req["parser_config"] = get_parser_config(
req["chunk_method"], req.get("parser_config")
)
DocumentService.update_parser_config(doc.id, req["parser_config"])
if doc.token_num > 0:
e = DocumentService.increment_chunk_num(
doc.id,
doc.kb_id,
doc.token_num * -1,
doc.chunk_num * -1,
doc.process_duation * -1,
)
if not e:
return get_error_data_result(message="Document not found!")
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), dataset_id)
return get_result()
@manager.route("/datasets/<dataset_id>/documents/<document_id>", methods=["GET"]) # noqa: F821
@token_required
def download(tenant_id, dataset_id, document_id):
"""
Download a document from a dataset.
---
tags:
- Documents
security:
- ApiKeyAuth: []
produces:
- application/octet-stream
parameters:
- in: path
name: dataset_id
type: string
required: true
description: ID of the dataset.
- in: path
name: document_id
type: string
required: true
description: ID of the document to download.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
responses:
200:
description: Document file stream.
schema:
type: file
400:
description: Error message.
schema:
type: object
"""
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(message=f"You do not own the dataset {dataset_id}.")
doc = DocumentService.query(kb_id=dataset_id, id=document_id)
if not doc:
return get_error_data_result(
message=f"The dataset not own the document {document_id}."
)
# The process of downloading
doc_id, doc_location = File2DocumentService.get_storage_address(
doc_id=document_id
) # minio address
file_stream = STORAGE_IMPL.get(doc_id, doc_location)
if not file_stream:
return construct_json_result(
message="This file is empty.", code=settings.RetCode.DATA_ERROR
)
file = BytesIO(file_stream)
# Use send_file with a proper filename and MIME type
return send_file(
file,
as_attachment=True,
download_name=doc[0].name,
mimetype="application/octet-stream", # Set a default MIME type
)
@manager.route("/datasets/<dataset_id>/documents", methods=["GET"]) # noqa: F821
@token_required
def list_docs(dataset_id, tenant_id):
"""
List documents in a dataset.
---
tags:
- Documents
security:
- ApiKeyAuth: []
parameters:
- in: path
name: dataset_id
type: string
required: true
description: ID of the dataset.
- in: query
name: id
type: string
required: false
description: Filter by document ID.
- in: query
name: page
type: integer
required: false
default: 1
description: Page number.
- in: query
name: page_size
type: integer
required: false
default: 30
description: Number of items per page.
- in: query
name: orderby
type: string
required: false
default: "create_time"
description: Field to order by.
- in: query
name: desc
type: boolean
required: false
default: true
description: Order in descending.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
responses:
200:
description: List of documents.
schema:
type: object
properties:
total:
type: integer
description: Total number of documents.
docs:
type: array
items:
type: object
properties:
id:
type: string
description: Document ID.
name:
type: string
description: Document name.
chunk_count:
type: integer
description: Number of chunks.
token_count:
type: integer
description: Number of tokens.
dataset_id:
type: string
description: ID of the dataset.
chunk_method:
type: string
description: Chunking method used.
run:
type: string
description: Processing status.
"""
if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
return get_error_data_result(message=f"You don't own the dataset {dataset_id}. ")
id = request.args.get("id")
name = request.args.get("name")
if not DocumentService.query(id=id, kb_id=dataset_id):
return get_error_data_result(message=f"You don't own the document {id}.")
if not DocumentService.query(name=name, kb_id=dataset_id):
return get_error_data_result(message=f"You don't own the document {name}.")
page = int(request.args.get("page", 1))
keywords = request.args.get("keywords", "")
page_size = int(request.args.get("page_size", 30))
orderby = request.args.get("orderby", "create_time")
if request.args.get("desc") == "False":
desc = False
else:
desc = True
docs, tol = DocumentService.get_list(
dataset_id, page, page_size, orderby, desc, keywords, id, name
)
# rename key's name
renamed_doc_list = []
for doc in docs:
key_mapping = {
"chunk_num": "chunk_count",
"kb_id": "dataset_id",
"token_num": "token_count",
"parser_id": "chunk_method",
}
run_mapping = {
"0": "UNSTART",
"1": "RUNNING",
"2": "CANCEL",
"3": "DONE",
"4": "FAIL",
}
renamed_doc = {}
for key, value in doc.items():
if key == "run":
renamed_doc["run"] = run_mapping.get(str(value))
new_key = key_mapping.get(key, key)
renamed_doc[new_key] = value
if key == "run":
renamed_doc["run"] = run_mapping.get(value)
renamed_doc_list.append(renamed_doc)
return get_result(data={"total": tol, "docs": renamed_doc_list})
@manager.route("/datasets/<dataset_id>/documents", methods=["DELETE"]) # noqa: F821
@token_required
def delete(tenant_id, dataset_id):
"""
Delete documents from a dataset.
---
tags:
- Documents
security:
- ApiKeyAuth: []
parameters:
- in: path
name: dataset_id
type: string
required: true
description: ID of the dataset.
- in: body
name: body
description: Document deletion parameters.
required: true
schema:
type: object
properties:
ids:
type: array
items:
type: string
description: List of document IDs to delete.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
responses:
200:
description: Documents deleted successfully.
schema:
type: object
"""
if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
return get_error_data_result(message=f"You don't own the dataset {dataset_id}. ")
req = request.json
if not req:
doc_ids = None
else:
doc_ids = req.get("ids")
if not doc_ids:
doc_list = []
docs = DocumentService.query(kb_id=dataset_id)
for doc in docs:
doc_list.append(doc.id)
else:
doc_list = doc_ids
root_folder = FileService.get_root_folder(tenant_id)
pf_id = root_folder["id"]
FileService.init_knowledgebase_docs(pf_id, tenant_id)
errors = ""
for doc_id in doc_list:
try:
e, doc = DocumentService.get_by_id(doc_id)
if not e:
return get_error_data_result(message="Document not found!")
tenant_id = DocumentService.get_tenant_id(doc_id)
if not tenant_id:
return get_error_data_result(message="Tenant not found!")
b, n = File2DocumentService.get_storage_address(doc_id=doc_id)
if not DocumentService.remove_document(doc, tenant_id):
return get_error_data_result(
message="Database error (Document removal)!"
)
f2d = File2DocumentService.get_by_document_id(doc_id)
FileService.filter_delete(
[
File.source_type == FileSource.KNOWLEDGEBASE,
File.id == f2d[0].file_id,
]
)
File2DocumentService.delete_by_document_id(doc_id)
STORAGE_IMPL.rm(b, n)
except Exception as e:
errors += str(e)
if errors:
return get_result(message=errors, code=settings.RetCode.SERVER_ERROR)
return get_result()
@manager.route("/datasets/<dataset_id>/chunks", methods=["POST"]) # noqa: F821
@token_required
def parse(tenant_id, dataset_id):
"""
Start parsing documents into chunks.
---
tags:
- Chunks
security:
- ApiKeyAuth: []
parameters:
- in: path
name: dataset_id
type: string
required: true
description: ID of the dataset.
- in: body
name: body
description: Parsing parameters.
required: true
schema:
type: object
properties:
document_ids:
type: array
items:
type: string
description: List of document IDs to parse.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
responses:
200:
description: Parsing started successfully.
schema:
type: object
"""
if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
req = request.json
if not req.get("document_ids"):
return get_error_data_result("`document_ids` is required")
for id in req["document_ids"]:
doc = DocumentService.query(id=id, kb_id=dataset_id)
if not doc:
return get_error_data_result(message=f"You don't own the document {id}.")
if doc[0].progress != 0.0:
return get_error_data_result(
"Can't stop parsing document with progress at 0 or 100"
)
info = {"run": "1", "progress": 0}
info["progress_msg"] = ""
info["chunk_num"] = 0
info["token_num"] = 0
DocumentService.update_by_id(id, info)
settings.docStoreConn.delete({"doc_id": id}, search.index_name(tenant_id), dataset_id)
TaskService.filter_delete([Task.doc_id == id])
e, doc = DocumentService.get_by_id(id)
doc = doc.to_dict()
doc["tenant_id"] = tenant_id
bucket, name = File2DocumentService.get_storage_address(doc_id=doc["id"])
queue_tasks(doc, bucket, name)
return get_result()
@manager.route("/datasets/<dataset_id>/chunks", methods=["DELETE"]) # noqa: F821
@token_required
def stop_parsing(tenant_id, dataset_id):
"""
Stop parsing documents into chunks.
---
tags:
- Chunks
security:
- ApiKeyAuth: []
parameters:
- in: path
name: dataset_id
type: string
required: true
description: ID of the dataset.
- in: body
name: body
description: Stop parsing parameters.
required: true
schema:
type: object
properties:
document_ids:
type: array
items:
type: string
description: List of document IDs to stop parsing.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
responses:
200:
description: Parsing stopped successfully.
schema:
type: object
"""
if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
req = request.json
if not req.get("document_ids"):
return get_error_data_result("`document_ids` is required")
for id in req["document_ids"]:
doc = DocumentService.query(id=id, kb_id=dataset_id)
if not doc:
return get_error_data_result(message=f"You don't own the document {id}.")
if int(doc[0].progress) == 1 or int(doc[0].progress) == 0:
return get_error_data_result(
"Can't stop parsing document with progress at 0 or 1"
)
info = {"run": "2", "progress": 0, "chunk_num": 0}
DocumentService.update_by_id(id, info)
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), dataset_id)
return get_result()
@manager.route("/datasets/<dataset_id>/documents/<document_id>/chunks", methods=["GET"]) # noqa: F821
@token_required
def list_chunks(tenant_id, dataset_id, document_id):
"""
List chunks of a document.
---
tags:
- Chunks
security:
- ApiKeyAuth: []
parameters:
- in: path
name: dataset_id
type: string
required: true
description: ID of the dataset.
- in: path
name: document_id
type: string
required: true
description: ID of the document.
- in: query
name: page
type: integer
required: false
default: 1
description: Page number.
- in: query
name: page_size
type: integer
required: false
default: 30
description: Number of items per page.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
responses:
200:
description: List of chunks.
schema:
type: object
properties:
total:
type: integer
description: Total number of chunks.
chunks:
type: array
items:
type: object
properties:
id:
type: string
description: Chunk ID.
content:
type: string
description: Chunk content.
document_id:
type: string
description: ID of the document.
important_keywords:
type: array
items:
type: string
description: Important keywords.
image_id:
type: string
description: Image ID associated with the chunk.
doc:
type: object
description: Document details.
"""
if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
doc = DocumentService.query(id=document_id, kb_id=dataset_id)
if not doc:
return get_error_data_result(
message=f"You don't own the document {document_id}."
)
doc = doc[0]
req = request.args
doc_id = document_id
page = int(req.get("page", 1))
size = int(req.get("page_size", 30))
question = req.get("keywords", "")
query = {
"doc_ids": [doc_id],
"page": page,
"size": size,
"question": question,
"sort": True,
}
key_mapping = {
"chunk_num": "chunk_count",
"kb_id": "dataset_id",
"token_num": "token_count",
"parser_id": "chunk_method",
}
run_mapping = {
"0": "UNSTART",
"1": "RUNNING",
"2": "CANCEL",
"3": "DONE",
"4": "FAIL",
}
doc = doc.to_dict()
renamed_doc = {}
for key, value in doc.items():
new_key = key_mapping.get(key, key)
renamed_doc[new_key] = value
if key == "run":
renamed_doc["run"] = run_mapping.get(str(value))
res = {"total": 0, "chunks": [], "doc": renamed_doc}
if req.get("id"):
chunk = settings.docStoreConn.get(req.get("id"), search.index_name(tenant_id), [dataset_id])
k = []
for n in chunk.keys():
if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
k.append(n)
for n in k:
del chunk[n]
if not chunk:
return get_error_data_result(f"Chunk `{req.get('id')}` not found.")
res['total'] = 1
final_chunk = {
"id":chunk.get("id",chunk.get("chunk_id")),
"content":chunk["content_with_weight"],
"document_id":chunk.get("doc_id",chunk.get("document_id")),
"docnm_kwd":chunk["docnm_kwd"],
"important_keywords":chunk.get("important_kwd",[]),
"questions":chunk.get("question_kwd",[]),
"dataset_id":chunk.get("kb_id",chunk.get("dataset_id")),
"image_id":chunk["img_id"],
"available":bool(chunk.get("available_int",1)),
"positions":chunk.get("position_int",[]),
}
res["chunks"].append(final_chunk)
_ = Chunk(**final_chunk)
elif settings.docStoreConn.indexExist(search.index_name(tenant_id), dataset_id):
sres = settings.retrievaler.search(query, search.index_name(tenant_id), [dataset_id], emb_mdl=None,
highlight=True)
res["total"] = sres.total
for id in sres.ids:
d = {
"id": id,
"content": (
rmSpace(sres.highlight[id])
if question and id in sres.highlight
else sres.field[id].get("content_with_weight", "")
),
"document_id": sres.field[id]["doc_id"],
"docnm_kwd": sres.field[id]["docnm_kwd"],
"important_keywords": sres.field[id].get("important_kwd", []),
"questions": sres.field[id].get("question_kwd", []),
"dataset_id": sres.field[id].get("kb_id", sres.field[id].get("dataset_id")),
"image_id": sres.field[id].get("img_id", ""),
"available": bool(sres.field[id].get("available_int", 1)),
"positions": sres.field[id].get("position_int",[]),
}
res["chunks"].append(d)
_ = Chunk(**d) # validate the chunk
return get_result(data=res)
@manager.route( # noqa: F821
"/datasets/<dataset_id>/documents/<document_id>/chunks", methods=["POST"]
)
@token_required
def add_chunk(tenant_id, dataset_id, document_id):
"""
Add a chunk to a document.
---
tags:
- Chunks
security:
- ApiKeyAuth: []
parameters:
- in: path
name: dataset_id
type: string
required: true
description: ID of the dataset.
- in: path
name: document_id
type: string
required: true
description: ID of the document.
- in: body
name: body
description: Chunk data.
required: true
schema:
type: object
properties:
content:
type: string
required: true
description: Content of the chunk.
important_keywords:
type: array
items:
type: string
description: Important keywords.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
responses:
200:
description: Chunk added successfully.
schema:
type: object
properties:
chunk:
type: object
properties:
id:
type: string
description: Chunk ID.
content:
type: string
description: Chunk content.
document_id:
type: string
description: ID of the document.
important_keywords:
type: array
items:
type: string
description: Important keywords.
"""
if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
doc = DocumentService.query(id=document_id, kb_id=dataset_id)
if not doc:
return get_error_data_result(
message=f"You don't own the document {document_id}."
)
doc = doc[0]
req = request.json
if not req.get("content"):
return get_error_data_result(message="`content` is required")
if "important_keywords" in req:
if not isinstance(req["important_keywords"], list):
return get_error_data_result(
"`important_keywords` is required to be a list"
)
if "questions" in req:
if not isinstance(req["questions"], list):
return get_error_data_result(
"`questions` is required to be a list"
)
chunk_id = xxhash.xxh64((req["content"] + document_id).encode("utf-8")).hexdigest()
d = {
"id": chunk_id,
"content_ltks": rag_tokenizer.tokenize(req["content"]),
"content_with_weight": req["content"],
}
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
d["important_kwd"] = req.get("important_keywords", [])
d["important_tks"] = rag_tokenizer.tokenize(
" ".join(req.get("important_keywords", []))
)
d["question_kwd"] = req.get("questions", [])
d["question_tks"] = rag_tokenizer.tokenize(
"\n".join(req.get("questions", []))
)
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
d["kb_id"] = dataset_id
d["docnm_kwd"] = doc.name
d["doc_id"] = document_id
embd_id = DocumentService.get_embd_id(document_id)
embd_mdl = TenantLLMService.model_instance(
tenant_id, LLMType.EMBEDDING.value, embd_id
)
v, c = embd_mdl.encode([doc.name, req["content"] if not d["question_kwd"] else "\n".join(d["question_kwd"])])
v = 0.1 * v[0] + 0.9 * v[1]
d["q_%d_vec" % len(v)] = v.tolist()
settings.docStoreConn.insert([d], search.index_name(tenant_id), dataset_id)
DocumentService.increment_chunk_num(doc.id, doc.kb_id, c, 1, 0)
# rename keys
key_mapping = {
"id": "id",
"content_with_weight": "content",
"doc_id": "document_id",
"important_kwd": "important_keywords",
"question_kwd": "questions",
"kb_id": "dataset_id",
"create_timestamp_flt": "create_timestamp",
"create_time": "create_time",
"document_keyword": "document",
}
renamed_chunk = {}
for key, value in d.items():
if key in key_mapping:
new_key = key_mapping.get(key, key)
renamed_chunk[new_key] = value
_ = Chunk(**renamed_chunk) # validate the chunk
return get_result(data={"chunk": renamed_chunk})
# return get_result(data={"chunk_id": chunk_id})
@manager.route( # noqa: F821
"datasets/<dataset_id>/documents/<document_id>/chunks", methods=["DELETE"]
)
@token_required
def rm_chunk(tenant_id, dataset_id, document_id):
"""
Remove chunks from a document.
---
tags:
- Chunks
security:
- ApiKeyAuth: []
parameters:
- in: path
name: dataset_id
type: string
required: true
description: ID of the dataset.
- in: path
name: document_id
type: string
required: true
description: ID of the document.
- in: body
name: body
description: Chunk removal parameters.
required: true
schema:
type: object
properties:
chunk_ids:
type: array
items:
type: string
description: List of chunk IDs to remove.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
responses:
200:
description: Chunks removed successfully.
schema:
type: object
"""
if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
req = request.json
condition = {"doc_id": document_id}
if "chunk_ids" in req:
condition["id"] = req["chunk_ids"]
chunk_number = settings.docStoreConn.delete(condition, search.index_name(tenant_id), dataset_id)
if chunk_number != 0:
DocumentService.decrement_chunk_num(document_id, dataset_id, 1, chunk_number, 0)
if "chunk_ids" in req and chunk_number != len(req["chunk_ids"]):
return get_error_data_result(message=f"rm_chunk deleted chunks {chunk_number}, expect {len(req['chunk_ids'])}")
return get_result(message=f"deleted {chunk_number} chunks")
@manager.route( # noqa: F821
"/datasets/<dataset_id>/documents/<document_id>/chunks/<chunk_id>", methods=["PUT"]
)
@token_required
def update_chunk(tenant_id, dataset_id, document_id, chunk_id):
"""
Update a chunk within a document.
---
tags:
- Chunks
security:
- ApiKeyAuth: []
parameters:
- in: path
name: dataset_id
type: string
required: true
description: ID of the dataset.
- in: path
name: document_id
type: string
required: true
description: ID of the document.
- in: path
name: chunk_id
type: string
required: true
description: ID of the chunk to update.
- in: body
name: body
description: Chunk update parameters.
required: true
schema:
type: object
properties:
content:
type: string
description: Updated content of the chunk.
important_keywords:
type: array
items:
type: string
description: Updated important keywords.
available:
type: boolean
description: Availability status of the chunk.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
responses:
200:
description: Chunk updated successfully.
schema:
type: object
"""
chunk = settings.docStoreConn.get(chunk_id, search.index_name(tenant_id), [dataset_id])
if chunk is None:
return get_error_data_result(f"Can't find this chunk {chunk_id}")
if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
doc = DocumentService.query(id=document_id, kb_id=dataset_id)
if not doc:
return get_error_data_result(
message=f"You don't own the document {document_id}."
)
doc = doc[0]
req = request.json
if "content" in req:
content = req["content"]
else:
content = chunk.get("content_with_weight", "")
d = {"id": chunk_id, "content_with_weight": content}
d["content_ltks"] = rag_tokenizer.tokenize(d["content_with_weight"])
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
if "important_keywords" in req:
if not isinstance(req["important_keywords"], list):
return get_error_data_result("`important_keywords` should be a list")
d["important_kwd"] = req.get("important_keywords", [])
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_keywords"]))
if "questions" in req:
if not isinstance(req["questions"], list):
return get_error_data_result("`questions` should be a list")
d["question_kwd"] = req.get("questions")
d["question_tks"] = rag_tokenizer.tokenize("\n".join(req["questions"]))
if "available" in req:
d["available_int"] = int(req["available"])
embd_id = DocumentService.get_embd_id(document_id)
embd_mdl = TenantLLMService.model_instance(
tenant_id, LLMType.EMBEDDING.value, embd_id
)
if doc.parser_id == ParserType.QA:
arr = [t for t in re.split(r"[\n\t]", d["content_with_weight"]) if len(t) > 1]
if len(arr) != 2:
return get_error_data_result(
message="Q&A must be separated by TAB/ENTER key."
)
q, a = rmPrefix(arr[0]), rmPrefix(arr[1])
d = beAdoc(
d, arr[0], arr[1], not any([rag_tokenizer.is_chinese(t) for t in q + a])
)
v, c = embd_mdl.encode([doc.name, d["content_with_weight"] if not d.get("question_kwd") else "\n".join(d["question_kwd"])])
v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
d["q_%d_vec" % len(v)] = v.tolist()
settings.docStoreConn.update({"id": chunk_id}, d, search.index_name(tenant_id), dataset_id)
return get_result()
@manager.route("/retrieval", methods=["POST"]) # noqa: F821
@token_required
def retrieval_test(tenant_id):
"""
Retrieve chunks based on a query.
---
tags:
- Retrieval
security:
- ApiKeyAuth: []
parameters:
- in: body
name: body
description: Retrieval parameters.
required: true
schema:
type: object
properties:
dataset_ids:
type: array
items:
type: string
required: true
description: List of dataset IDs to search in.
question:
type: string
required: true
description: Query string.
document_ids:
type: array
items:
type: string
description: List of document IDs to filter.
similarity_threshold:
type: number
format: float
description: Similarity threshold.
vector_similarity_weight:
type: number
format: float
description: Vector similarity weight.
top_k:
type: integer
description: Maximum number of chunks to return.
highlight:
type: boolean
description: Whether to highlight matched content.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
responses:
200:
description: Retrieval results.
schema:
type: object
properties:
chunks:
type: array
items:
type: object
properties:
id:
type: string
description: Chunk ID.
content:
type: string
description: Chunk content.
document_id:
type: string
description: ID of the document.
dataset_id:
type: string
description: ID of the dataset.
similarity:
type: number
format: float
description: Similarity score.
"""
req = request.json
if not req.get("dataset_ids"):
return get_error_data_result("`dataset_ids` is required.")
kb_ids = req["dataset_ids"]
if not isinstance(kb_ids, list):
return get_error_data_result("`dataset_ids` should be a list")
kbs = KnowledgebaseService.get_by_ids(kb_ids)
for id in kb_ids:
if not KnowledgebaseService.accessible(kb_id=id, user_id=tenant_id):
return get_error_data_result(f"You don't own the dataset {id}.")
embd_nms = list(set([kb.embd_id for kb in kbs]))
if len(embd_nms) != 1:
return get_result(
message='Datasets use different embedding models."',
code=settings.RetCode.AUTHENTICATION_ERROR,
)
if "question" not in req:
return get_error_data_result("`question` is required.")
page = int(req.get("page", 1))
size = int(req.get("page_size", 30))
question = req["question"]
doc_ids = req.get("document_ids", [])
if not isinstance(doc_ids, list):
return get_error_data_result("`documents` should be a list")
doc_ids_list = KnowledgebaseService.list_documents_by_ids(kb_ids)
for doc_id in doc_ids:
if doc_id not in doc_ids_list:
return get_error_data_result(
f"The datasets don't own the document {doc_id}"
)
similarity_threshold = float(req.get("similarity_threshold", 0.2))
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
top = int(req.get("top_k", 1024))
if req.get("highlight") == "False" or req.get("highlight") == "false":
highlight = False
else:
highlight = True
try:
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
if not e:
return get_error_data_result(message="Dataset not found!")
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id)
rerank_mdl = None
if req.get("rerank_id"):
rerank_mdl = LLMBundle(kb.tenant_id, LLMType.RERANK, llm_name=req["rerank_id"])
if req.get("keyword", False):
chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
question += keyword_extraction(chat_mdl, question)
retr = settings.retrievaler if kb.parser_id != ParserType.KG else settings.kg_retrievaler
ranks = retr.retrieval(
question,
embd_mdl,
kb.tenant_id,
kb_ids,
page,
size,
similarity_threshold,
vector_similarity_weight,
top,
doc_ids,
rerank_mdl=rerank_mdl,
highlight=highlight,
rank_feature=label_question(question, kbs)
)
for c in ranks["chunks"]:
c.pop("vector", None)
##rename keys
renamed_chunks = []
for chunk in ranks["chunks"]:
key_mapping = {
"chunk_id": "id",
"content_with_weight": "content",
"doc_id": "document_id",
"important_kwd": "important_keywords",
"question_kwd": "questions",
"docnm_kwd": "document_keyword",
"kb_id":"dataset_id"
}
rename_chunk = {}
for key, value in chunk.items():
new_key = key_mapping.get(key, key)
rename_chunk[new_key] = value
renamed_chunks.append(rename_chunk)
ranks["chunks"] = renamed_chunks
return get_result(data=ranks)
except Exception as e:
if str(e).find("not_found") > 0:
return get_result(
message="No chunk found! Check the chunk status please!",
code=settings.RetCode.DATA_ERROR,
)
return server_error_response(e)