|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import binascii |
|
import os |
|
import json |
|
import re |
|
from copy import deepcopy |
|
from timeit import default_timer as timer |
|
|
|
|
|
from api.db import LLMType, ParserType,StatusEnum |
|
from api.db.db_models import Dialog, Conversation,DB |
|
from api.db.services.common_service import CommonService |
|
from api.db.services.knowledgebase_service import KnowledgebaseService |
|
from api.db.services.llm_service import LLMService, TenantLLMService, LLMBundle |
|
from api.settings import chat_logger, retrievaler, kg_retrievaler |
|
from rag.app.resume import forbidden_select_fields4resume |
|
from rag.nlp.search import index_name |
|
from rag.utils import rmSpace, num_tokens_from_string, encoder |
|
from api.utils.file_utils import get_project_base_directory |
|
|
|
|
|
class DialogService(CommonService): |
|
model = Dialog |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def get_list(cls, tenant_id, |
|
page_number, items_per_page, orderby, desc, id , name): |
|
chats = cls.model.select() |
|
if id: |
|
chats = chats.where(cls.model.id == id) |
|
if name: |
|
chats = chats.where(cls.model.name == name) |
|
chats = chats.where( |
|
(cls.model.tenant_id == tenant_id) |
|
& (cls.model.status == StatusEnum.VALID.value) |
|
) |
|
if desc: |
|
chats = chats.order_by(cls.model.getter_by(orderby).desc()) |
|
else: |
|
chats = chats.order_by(cls.model.getter_by(orderby).asc()) |
|
|
|
chats = chats.paginate(page_number, items_per_page) |
|
|
|
return list(chats.dicts()) |
|
|
|
|
|
class ConversationService(CommonService): |
|
model = Conversation |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def get_list(cls,dialog_id,page_number, items_per_page, orderby, desc, id , name): |
|
sessions = cls.model.select().where(cls.model.dialog_id ==dialog_id) |
|
if id: |
|
sessions = sessions.where(cls.model.id == id) |
|
if name: |
|
sessions = sessions.where(cls.model.name == name) |
|
if desc: |
|
sessions = sessions.order_by(cls.model.getter_by(orderby).desc()) |
|
else: |
|
sessions = sessions.order_by(cls.model.getter_by(orderby).asc()) |
|
|
|
sessions = sessions.paginate(page_number, items_per_page) |
|
|
|
return list(sessions.dicts()) |
|
|
|
|
|
def message_fit_in(msg, max_length=4000): |
|
def count(): |
|
nonlocal msg |
|
tks_cnts = [] |
|
for m in msg: |
|
tks_cnts.append( |
|
{"role": m["role"], "count": num_tokens_from_string(m["content"])}) |
|
total = 0 |
|
for m in tks_cnts: |
|
total += m["count"] |
|
return total |
|
|
|
c = count() |
|
if c < max_length: |
|
return c, msg |
|
|
|
msg_ = [m for m in msg[:-1] if m["role"] == "system"] |
|
msg_.append(msg[-1]) |
|
msg = msg_ |
|
c = count() |
|
if c < max_length: |
|
return c, msg |
|
|
|
ll = num_tokens_from_string(msg_[0]["content"]) |
|
l = num_tokens_from_string(msg_[-1]["content"]) |
|
if ll / (ll + l) > 0.8: |
|
m = msg_[0]["content"] |
|
m = encoder.decode(encoder.encode(m)[:max_length - l]) |
|
msg[0]["content"] = m |
|
return max_length, msg |
|
|
|
m = msg_[1]["content"] |
|
m = encoder.decode(encoder.encode(m)[:max_length - l]) |
|
msg[1]["content"] = m |
|
return max_length, msg |
|
|
|
|
|
def llm_id2llm_type(llm_id): |
|
llm_id = llm_id.split("@")[0] |
|
fnm = os.path.join(get_project_base_directory(), "conf") |
|
llm_factories = json.load(open(os.path.join(fnm, "llm_factories.json"), "r")) |
|
for llm_factory in llm_factories["factory_llm_infos"]: |
|
for llm in llm_factory["llm"]: |
|
if llm_id == llm["llm_name"]: |
|
return llm["model_type"].strip(",")[-1] |
|
|
|
|
|
def chat(dialog, messages, stream=True, **kwargs): |
|
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user." |
|
st = timer() |
|
tmp = dialog.llm_id.split("@") |
|
fid = None |
|
llm_id = tmp[0] |
|
if len(tmp)>1: fid = tmp[1] |
|
|
|
llm = LLMService.query(llm_name=llm_id) if not fid else LLMService.query(llm_name=llm_id, fid=fid) |
|
if not llm: |
|
llm = TenantLLMService.query(tenant_id=dialog.tenant_id, llm_name=llm_id) if not fid else \ |
|
TenantLLMService.query(tenant_id=dialog.tenant_id, llm_name=llm_id, llm_factory=fid) |
|
if not llm: |
|
raise LookupError("LLM(%s) not found" % dialog.llm_id) |
|
max_tokens = 8192 |
|
else: |
|
max_tokens = llm[0].max_tokens |
|
kbs = KnowledgebaseService.get_by_ids(dialog.kb_ids) |
|
embd_nms = list(set([kb.embd_id for kb in kbs])) |
|
if len(embd_nms) != 1: |
|
yield {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []} |
|
return {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []} |
|
|
|
is_kg = all([kb.parser_id == ParserType.KG for kb in kbs]) |
|
retr = retrievaler if not is_kg else kg_retrievaler |
|
|
|
questions = [m["content"] for m in messages if m["role"] == "user"][-3:] |
|
attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None |
|
if "doc_ids" in messages[-1]: |
|
attachments = messages[-1]["doc_ids"] |
|
for m in messages[:-1]: |
|
if "doc_ids" in m: |
|
attachments.extend(m["doc_ids"]) |
|
|
|
embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING, embd_nms[0]) |
|
if llm_id2llm_type(dialog.llm_id) == "image2text": |
|
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id) |
|
else: |
|
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id) |
|
|
|
prompt_config = dialog.prompt_config |
|
field_map = KnowledgebaseService.get_field_map(dialog.kb_ids) |
|
tts_mdl = None |
|
if prompt_config.get("tts"): |
|
tts_mdl = LLMBundle(dialog.tenant_id, LLMType.TTS) |
|
|
|
if field_map: |
|
chat_logger.info("Use SQL to retrieval:{}".format(questions[-1])) |
|
ans = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl, prompt_config.get("quote", True)) |
|
if ans: |
|
yield ans |
|
return |
|
|
|
for p in prompt_config["parameters"]: |
|
if p["key"] == "knowledge": |
|
continue |
|
if p["key"] not in kwargs and not p["optional"]: |
|
raise KeyError("Miss parameter: " + p["key"]) |
|
if p["key"] not in kwargs: |
|
prompt_config["system"] = prompt_config["system"].replace( |
|
"{%s}" % p["key"], " ") |
|
|
|
if len(questions) > 1 and prompt_config.get("refine_multiturn"): |
|
questions = [full_question(dialog.tenant_id, dialog.llm_id, messages)] |
|
else: |
|
questions = questions[-1:] |
|
|
|
rerank_mdl = None |
|
if dialog.rerank_id: |
|
rerank_mdl = LLMBundle(dialog.tenant_id, LLMType.RERANK, dialog.rerank_id) |
|
|
|
for _ in range(len(questions) // 2): |
|
questions.append(questions[-1]) |
|
if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]: |
|
kbinfos = {"total": 0, "chunks": [], "doc_aggs": []} |
|
else: |
|
if prompt_config.get("keyword", False): |
|
questions[-1] += keyword_extraction(chat_mdl, questions[-1]) |
|
|
|
tenant_ids = list(set([kb.tenant_id for kb in kbs])) |
|
kbinfos = retr.retrieval(" ".join(questions), embd_mdl, tenant_ids, dialog.kb_ids, 1, dialog.top_n, |
|
dialog.similarity_threshold, |
|
dialog.vector_similarity_weight, |
|
doc_ids=attachments, |
|
top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl) |
|
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]] |
|
chat_logger.info( |
|
"{}->{}".format(" ".join(questions), "\n->".join(knowledges))) |
|
retrieval_tm = timer() |
|
|
|
if not knowledges and prompt_config.get("empty_response"): |
|
empty_res = prompt_config["empty_response"] |
|
yield {"answer": empty_res, "reference": kbinfos, "audio_binary": tts(tts_mdl, empty_res)} |
|
return {"answer": prompt_config["empty_response"], "reference": kbinfos} |
|
|
|
kwargs["knowledge"] = "\n\n------\n\n".join(knowledges) |
|
gen_conf = dialog.llm_setting |
|
|
|
msg = [{"role": "system", "content": prompt_config["system"].format(**kwargs)}] |
|
msg.extend([{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])} |
|
for m in messages if m["role"] != "system"]) |
|
used_token_count, msg = message_fit_in(msg, int(max_tokens * 0.97)) |
|
assert len(msg) >= 2, f"message_fit_in has bug: {msg}" |
|
prompt = msg[0]["content"] |
|
prompt += "\n\n### Query:\n%s" % " ".join(questions) |
|
|
|
if "max_tokens" in gen_conf: |
|
gen_conf["max_tokens"] = min( |
|
gen_conf["max_tokens"], |
|
max_tokens - used_token_count) |
|
|
|
def decorate_answer(answer): |
|
nonlocal prompt_config, knowledges, kwargs, kbinfos, prompt, retrieval_tm |
|
refs = [] |
|
if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)): |
|
answer, idx = retr.insert_citations(answer, |
|
[ck["content_ltks"] |
|
for ck in kbinfos["chunks"]], |
|
[ck["vector"] |
|
for ck in kbinfos["chunks"]], |
|
embd_mdl, |
|
tkweight=1 - dialog.vector_similarity_weight, |
|
vtweight=dialog.vector_similarity_weight) |
|
idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx]) |
|
recall_docs = [ |
|
d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx] |
|
if not recall_docs: recall_docs = kbinfos["doc_aggs"] |
|
kbinfos["doc_aggs"] = recall_docs |
|
|
|
refs = deepcopy(kbinfos) |
|
for c in refs["chunks"]: |
|
if c.get("vector"): |
|
del c["vector"] |
|
|
|
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0: |
|
answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'" |
|
done_tm = timer() |
|
prompt += "\n\n### Elapsed\n - Retrieval: %.1f ms\n - LLM: %.1f ms"%((retrieval_tm-st)*1000, (done_tm-st)*1000) |
|
return {"answer": answer, "reference": refs, "prompt": prompt} |
|
|
|
if stream: |
|
last_ans = "" |
|
answer = "" |
|
for ans in chat_mdl.chat_streamly(prompt, msg[1:], gen_conf): |
|
answer = ans |
|
delta_ans = ans[len(last_ans):] |
|
if num_tokens_from_string(delta_ans) < 16: |
|
continue |
|
last_ans = answer |
|
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)} |
|
delta_ans = answer[len(last_ans):] |
|
if delta_ans: |
|
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)} |
|
yield decorate_answer(answer) |
|
else: |
|
answer = chat_mdl.chat(prompt, msg[1:], gen_conf) |
|
chat_logger.info("User: {}|Assistant: {}".format( |
|
msg[-1]["content"], answer)) |
|
res = decorate_answer(answer) |
|
res["audio_binary"] = tts(tts_mdl, answer) |
|
yield res |
|
|
|
|
|
def use_sql(question, field_map, tenant_id, chat_mdl, quota=True): |
|
sys_prompt = "你是一个DBA。你需要这对以下表的字段结构,根据用户的问题列表,写出最后一个问题对应的SQL。" |
|
user_promt = """ |
|
表名:{}; |
|
数据库表字段说明如下: |
|
{} |
|
|
|
问题如下: |
|
{} |
|
请写出SQL, 且只要SQL,不要有其他说明及文字。 |
|
""".format( |
|
index_name(tenant_id), |
|
"\n".join([f"{k}: {v}" for k, v in field_map.items()]), |
|
question |
|
) |
|
tried_times = 0 |
|
|
|
def get_table(): |
|
nonlocal sys_prompt, user_promt, question, tried_times |
|
sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], { |
|
"temperature": 0.06}) |
|
print(user_promt, sql) |
|
chat_logger.info(f"“{question}”==>{user_promt} get SQL: {sql}") |
|
sql = re.sub(r"[\r\n]+", " ", sql.lower()) |
|
sql = re.sub(r".*select ", "select ", sql.lower()) |
|
sql = re.sub(r" +", " ", sql) |
|
sql = re.sub(r"([;;]|```).*", "", sql) |
|
if sql[:len("select ")] != "select ": |
|
return None, None |
|
if not re.search(r"((sum|avg|max|min)\(|group by )", sql.lower()): |
|
if sql[:len("select *")] != "select *": |
|
sql = "select doc_id,docnm_kwd," + sql[6:] |
|
else: |
|
flds = [] |
|
for k in field_map.keys(): |
|
if k in forbidden_select_fields4resume: |
|
continue |
|
if len(flds) > 11: |
|
break |
|
flds.append(k) |
|
sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:] |
|
|
|
print(f"“{question}” get SQL(refined): {sql}") |
|
|
|
chat_logger.info(f"“{question}” get SQL(refined): {sql}") |
|
tried_times += 1 |
|
return retrievaler.sql_retrieval(sql, format="json"), sql |
|
|
|
tbl, sql = get_table() |
|
if tbl is None: |
|
return None |
|
if tbl.get("error") and tried_times <= 2: |
|
user_promt = """ |
|
表名:{}; |
|
数据库表字段说明如下: |
|
{} |
|
|
|
问题如下: |
|
{} |
|
|
|
你上一次给出的错误SQL如下: |
|
{} |
|
|
|
后台报错如下: |
|
{} |
|
|
|
请纠正SQL中的错误再写一遍,且只要SQL,不要有其他说明及文字。 |
|
""".format( |
|
index_name(tenant_id), |
|
"\n".join([f"{k}: {v}" for k, v in field_map.items()]), |
|
question, sql, tbl["error"] |
|
) |
|
tbl, sql = get_table() |
|
chat_logger.info("TRY it again: {}".format(sql)) |
|
|
|
chat_logger.info("GET table: {}".format(tbl)) |
|
print(tbl) |
|
if tbl.get("error") or len(tbl["rows"]) == 0: |
|
return None |
|
|
|
docid_idx = set([ii for ii, c in enumerate( |
|
tbl["columns"]) if c["name"] == "doc_id"]) |
|
docnm_idx = set([ii for ii, c in enumerate( |
|
tbl["columns"]) if c["name"] == "docnm_kwd"]) |
|
clmn_idx = [ii for ii in range( |
|
len(tbl["columns"])) if ii not in (docid_idx | docnm_idx)] |
|
|
|
|
|
clmns = "|" + "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"], |
|
tbl["columns"][i]["name"])) for i in |
|
clmn_idx]) + ("|Source|" if docid_idx and docid_idx else "|") |
|
|
|
line = "|" + "|".join(["------" for _ in range(len(clmn_idx))]) + \ |
|
("|------|" if docid_idx and docid_idx else "") |
|
|
|
rows = ["|" + |
|
"|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") + |
|
"|" for r in tbl["rows"]] |
|
if quota: |
|
rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)]) |
|
else: |
|
rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)]) |
|
rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows) |
|
|
|
if not docid_idx or not docnm_idx: |
|
chat_logger.warning("SQL missing field: " + sql) |
|
return { |
|
"answer": "\n".join([clmns, line, rows]), |
|
"reference": {"chunks": [], "doc_aggs": []}, |
|
"prompt": sys_prompt |
|
} |
|
|
|
docid_idx = list(docid_idx)[0] |
|
docnm_idx = list(docnm_idx)[0] |
|
doc_aggs = {} |
|
for r in tbl["rows"]: |
|
if r[docid_idx] not in doc_aggs: |
|
doc_aggs[r[docid_idx]] = {"doc_name": r[docnm_idx], "count": 0} |
|
doc_aggs[r[docid_idx]]["count"] += 1 |
|
return { |
|
"answer": "\n".join([clmns, line, rows]), |
|
"reference": {"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[docnm_idx]} for r in tbl["rows"]], |
|
"doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in |
|
doc_aggs.items()]}, |
|
"prompt": sys_prompt |
|
} |
|
|
|
|
|
def relevant(tenant_id, llm_id, question, contents: list): |
|
if llm_id2llm_type(llm_id) == "image2text": |
|
chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id) |
|
else: |
|
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id) |
|
prompt = """ |
|
You are a grader assessing relevance of a retrieved document to a user question. |
|
It does not need to be a stringent test. The goal is to filter out erroneous retrievals. |
|
If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant. |
|
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question. |
|
No other words needed except 'yes' or 'no'. |
|
""" |
|
if not contents:return False |
|
contents = "Documents: \n" + " - ".join(contents) |
|
contents = f"Question: {question}\n" + contents |
|
if num_tokens_from_string(contents) >= chat_mdl.max_length - 4: |
|
contents = encoder.decode(encoder.encode(contents)[:chat_mdl.max_length - 4]) |
|
ans = chat_mdl.chat(prompt, [{"role": "user", "content": contents}], {"temperature": 0.01}) |
|
if ans.lower().find("yes") >= 0: return True |
|
return False |
|
|
|
|
|
def rewrite(tenant_id, llm_id, question): |
|
if llm_id2llm_type(llm_id) == "image2text": |
|
chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id) |
|
else: |
|
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id) |
|
prompt = """ |
|
You are an expert at query expansion to generate a paraphrasing of a question. |
|
I can't retrieval relevant information from the knowledge base by using user's question directly. |
|
You need to expand or paraphrase user's question by multiple ways such as using synonyms words/phrase, |
|
writing the abbreviation in its entirety, adding some extra descriptions or explanations, |
|
changing the way of expression, translating the original question into another language (English/Chinese), etc. |
|
And return 5 versions of question and one is from translation. |
|
Just list the question. No other words are needed. |
|
""" |
|
ans = chat_mdl.chat(prompt, [{"role": "user", "content": question}], {"temperature": 0.8}) |
|
return ans |
|
|
|
|
|
def keyword_extraction(chat_mdl, content, topn=3): |
|
prompt = f""" |
|
Role: You're a text analyzer. |
|
Task: extract the most important keywords/phrases of a given piece of text content. |
|
Requirements: |
|
- Summarize the text content, and give top {topn} important keywords/phrases. |
|
- The keywords MUST be in language of the given piece of text content. |
|
- The keywords are delimited by ENGLISH COMMA. |
|
- Keywords ONLY in output. |
|
|
|
### Text Content |
|
{content} |
|
|
|
""" |
|
msg = [ |
|
{"role": "system", "content": prompt}, |
|
{"role": "user", "content": "Output: "} |
|
] |
|
_, msg = message_fit_in(msg, chat_mdl.max_length) |
|
kwd = chat_mdl.chat(prompt, msg[1:], {"temperature": 0.2}) |
|
if isinstance(kwd, tuple): kwd = kwd[0] |
|
if kwd.find("**ERROR**") >=0: return "" |
|
return kwd |
|
|
|
|
|
def question_proposal(chat_mdl, content, topn=3): |
|
prompt = f""" |
|
Role: You're a text analyzer. |
|
Task: propose {topn} questions about a given piece of text content. |
|
Requirements: |
|
- Understand and summarize the text content, and propose top {topn} important questions. |
|
- The questions SHOULD NOT have overlapping meanings. |
|
- The questions SHOULD cover the main content of the text as much as possible. |
|
- The questions MUST be in language of the given piece of text content. |
|
- One question per line. |
|
- Question ONLY in output. |
|
|
|
### Text Content |
|
{content} |
|
|
|
""" |
|
msg = [ |
|
{"role": "system", "content": prompt}, |
|
{"role": "user", "content": "Output: "} |
|
] |
|
_, msg = message_fit_in(msg, chat_mdl.max_length) |
|
kwd = chat_mdl.chat(prompt, msg[1:], {"temperature": 0.2}) |
|
if isinstance(kwd, tuple): kwd = kwd[0] |
|
if kwd.find("**ERROR**") >= 0: return "" |
|
return kwd |
|
|
|
|
|
def full_question(tenant_id, llm_id, messages): |
|
if llm_id2llm_type(llm_id) == "image2text": |
|
chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id) |
|
else: |
|
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id) |
|
conv = [] |
|
for m in messages: |
|
if m["role"] not in ["user", "assistant"]: continue |
|
conv.append("{}: {}".format(m["role"].upper(), m["content"])) |
|
conv = "\n".join(conv) |
|
prompt = f""" |
|
Role: A helpful assistant |
|
Task: Generate a full user question that would follow the conversation. |
|
Requirements & Restrictions: |
|
- Text generated MUST be in the same language of the original user's question. |
|
- If the user's latest question is completely, don't do anything, just return the original question. |
|
- DON'T generate anything except a refined question. |
|
|
|
###################### |
|
-Examples- |
|
###################### |
|
|
|
# Example 1 |
|
## Conversation |
|
USER: What is the name of Donald Trump's father? |
|
ASSISTANT: Fred Trump. |
|
USER: And his mother? |
|
############### |
|
Output: What's the name of Donald Trump's mother? |
|
|
|
------------ |
|
# Example 2 |
|
## Conversation |
|
USER: What is the name of Donald Trump's father? |
|
ASSISTANT: Fred Trump. |
|
USER: And his mother? |
|
ASSISTANT: Mary Trump. |
|
User: What's her full name? |
|
############### |
|
Output: What's the full name of Donald Trump's mother Mary Trump? |
|
|
|
###################### |
|
|
|
# Real Data |
|
## Conversation |
|
{conv} |
|
############### |
|
""" |
|
ans = chat_mdl.chat(prompt, [{"role": "user", "content": "Output: "}], {"temperature": 0.2}) |
|
return ans if ans.find("**ERROR**") < 0 else messages[-1]["content"] |
|
|
|
|
|
def tts(tts_mdl, text): |
|
if not tts_mdl or not text: return |
|
bin = b"" |
|
for chunk in tts_mdl.tts(text): |
|
bin += chunk |
|
return binascii.hexlify(bin).decode("utf-8") |
|
|
|
|
|
def ask(question, kb_ids, tenant_id): |
|
kbs = KnowledgebaseService.get_by_ids(kb_ids) |
|
embd_nms = list(set([kb.embd_id for kb in kbs])) |
|
|
|
is_kg = all([kb.parser_id == ParserType.KG for kb in kbs]) |
|
retr = retrievaler if not is_kg else kg_retrievaler |
|
|
|
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embd_nms[0]) |
|
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT) |
|
max_tokens = chat_mdl.max_length |
|
|
|
kbinfos = retr.retrieval(question, embd_mdl, tenant_id, kb_ids, 1, 12, 0.1, 0.3, aggs=False) |
|
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]] |
|
|
|
used_token_count = 0 |
|
for i, c in enumerate(knowledges): |
|
used_token_count += num_tokens_from_string(c) |
|
if max_tokens * 0.97 < used_token_count: |
|
knowledges = knowledges[:i] |
|
break |
|
|
|
prompt = """ |
|
Role: You're a smart assistant. Your name is Miss R. |
|
Task: Summarize the information from knowledge bases and answer user's question. |
|
Requirements and restriction: |
|
- DO NOT make things up, especially for numbers. |
|
- If the information from knowledge is irrelevant with user's question, JUST SAY: Sorry, no relevant information provided. |
|
- Answer with markdown format text. |
|
- Answer in language of user's question. |
|
- DO NOT make things up, especially for numbers. |
|
|
|
### Information from knowledge bases |
|
%s |
|
|
|
The above is information from knowledge bases. |
|
|
|
"""%"\n".join(knowledges) |
|
msg = [{"role": "user", "content": question}] |
|
|
|
def decorate_answer(answer): |
|
nonlocal knowledges, kbinfos, prompt |
|
answer, idx = retr.insert_citations(answer, |
|
[ck["content_ltks"] |
|
for ck in kbinfos["chunks"]], |
|
[ck["vector"] |
|
for ck in kbinfos["chunks"]], |
|
embd_mdl, |
|
tkweight=0.7, |
|
vtweight=0.3) |
|
idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx]) |
|
recall_docs = [ |
|
d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx] |
|
if not recall_docs: recall_docs = kbinfos["doc_aggs"] |
|
kbinfos["doc_aggs"] = recall_docs |
|
refs = deepcopy(kbinfos) |
|
for c in refs["chunks"]: |
|
if c.get("vector"): |
|
del c["vector"] |
|
|
|
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0: |
|
answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'" |
|
return {"answer": answer, "reference": refs} |
|
|
|
answer = "" |
|
for ans in chat_mdl.chat_streamly(prompt, msg, {"temperature": 0.1}): |
|
answer = ans |
|
yield {"answer": answer, "reference": {}} |
|
yield decorate_answer(answer) |
|
|
|
|