|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import datetime |
|
import json |
|
import traceback |
|
|
|
from flask import request |
|
from flask_login import login_required, current_user |
|
from elasticsearch_dsl import Q |
|
|
|
from api.db.services.dialog_service import keyword_extraction |
|
from rag.app.qa import rmPrefix, beAdoc |
|
from rag.nlp import search, rag_tokenizer |
|
from rag.utils.es_conn import ELASTICSEARCH |
|
from rag.utils import rmSpace |
|
from api.db import LLMType, ParserType |
|
from api.db.services.knowledgebase_service import KnowledgebaseService |
|
from api.db.services.llm_service import LLMBundle |
|
from api.db.services.user_service import UserTenantService |
|
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request |
|
from api.db.services.document_service import DocumentService |
|
from api.settings import RetCode, retrievaler, kg_retrievaler |
|
from api.utils.api_utils import get_json_result |
|
import hashlib |
|
import re |
|
|
|
|
|
@manager.route('/list', methods=['POST']) |
|
@login_required |
|
@validate_request("doc_id") |
|
def list_chunk(): |
|
req = request.json |
|
doc_id = req["doc_id"] |
|
page = int(req.get("page", 1)) |
|
size = int(req.get("size", 30)) |
|
question = req.get("keywords", "") |
|
try: |
|
tenant_id = DocumentService.get_tenant_id(req["doc_id"]) |
|
if not tenant_id: |
|
return get_data_error_result(retmsg="Tenant not found!") |
|
e, doc = DocumentService.get_by_id(doc_id) |
|
if not e: |
|
return get_data_error_result(retmsg="Document not found!") |
|
query = { |
|
"doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True |
|
} |
|
if "available_int" in req: |
|
query["available_int"] = int(req["available_int"]) |
|
sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True) |
|
res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()} |
|
for id in sres.ids: |
|
d = { |
|
"chunk_id": id, |
|
"content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[ |
|
id].get( |
|
"content_with_weight", ""), |
|
"doc_id": sres.field[id]["doc_id"], |
|
"docnm_kwd": sres.field[id]["docnm_kwd"], |
|
"important_kwd": sres.field[id].get("important_kwd", []), |
|
"img_id": sres.field[id].get("img_id", ""), |
|
"available_int": sres.field[id].get("available_int", 1), |
|
"positions": sres.field[id].get("position_int", "").split("\t") |
|
} |
|
if len(d["positions"]) % 5 == 0: |
|
poss = [] |
|
for i in range(0, len(d["positions"]), 5): |
|
poss.append([float(d["positions"][i]), float(d["positions"][i + 1]), float(d["positions"][i + 2]), |
|
float(d["positions"][i + 3]), float(d["positions"][i + 4])]) |
|
d["positions"] = poss |
|
res["chunks"].append(d) |
|
return get_json_result(data=res) |
|
except Exception as e: |
|
if str(e).find("not_found") > 0: |
|
return get_json_result(data=False, retmsg=f'No chunk found!', |
|
retcode=RetCode.DATA_ERROR) |
|
return server_error_response(e) |
|
|
|
|
|
@manager.route('/get', methods=['GET']) |
|
@login_required |
|
def get(): |
|
chunk_id = request.args["chunk_id"] |
|
try: |
|
tenants = UserTenantService.query(user_id=current_user.id) |
|
if not tenants: |
|
return get_data_error_result(retmsg="Tenant not found!") |
|
res = ELASTICSEARCH.get( |
|
chunk_id, search.index_name( |
|
tenants[0].tenant_id)) |
|
if not res.get("found"): |
|
return server_error_response("Chunk not found") |
|
id = res["_id"] |
|
res = res["_source"] |
|
res["chunk_id"] = id |
|
k = [] |
|
for n in res.keys(): |
|
if re.search(r"(_vec$|_sm_|_tks|_ltks)", n): |
|
k.append(n) |
|
for n in k: |
|
del res[n] |
|
|
|
return get_json_result(data=res) |
|
except Exception as e: |
|
if str(e).find("NotFoundError") >= 0: |
|
return get_json_result(data=False, retmsg=f'Chunk not found!', |
|
retcode=RetCode.DATA_ERROR) |
|
return server_error_response(e) |
|
|
|
|
|
@manager.route('/set', methods=['POST']) |
|
@login_required |
|
@validate_request("doc_id", "chunk_id", "content_with_weight", |
|
"important_kwd") |
|
def set(): |
|
req = request.json |
|
d = { |
|
"id": req["chunk_id"], |
|
"content_with_weight": req["content_with_weight"]} |
|
d["content_ltks"] = rag_tokenizer.tokenize(req["content_with_weight"]) |
|
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"]) |
|
d["important_kwd"] = req["important_kwd"] |
|
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_kwd"])) |
|
if "available_int" in req: |
|
d["available_int"] = req["available_int"] |
|
|
|
try: |
|
tenant_id = DocumentService.get_tenant_id(req["doc_id"]) |
|
if not tenant_id: |
|
return get_data_error_result(retmsg="Tenant not found!") |
|
|
|
embd_id = DocumentService.get_embd_id(req["doc_id"]) |
|
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embd_id) |
|
|
|
e, doc = DocumentService.get_by_id(req["doc_id"]) |
|
if not e: |
|
return get_data_error_result(retmsg="Document not found!") |
|
|
|
if doc.parser_id == ParserType.QA: |
|
arr = [ |
|
t for t in re.split( |
|
r"[\n\t]", |
|
req["content_with_weight"]) if len(t) > 1] |
|
if len(arr) != 2: |
|
return get_data_error_result( |
|
retmsg="Q&A must be separated by TAB/ENTER key.") |
|
q, a = rmPrefix(arr[0]), rmPrefix(arr[1]) |
|
d = beAdoc(d, arr[0], arr[1], not any( |
|
[rag_tokenizer.is_chinese(t) for t in q + a])) |
|
|
|
v, c = embd_mdl.encode([doc.name, req["content_with_weight"]]) |
|
v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1] |
|
d["q_%d_vec" % len(v)] = v.tolist() |
|
ELASTICSEARCH.upsert([d], search.index_name(tenant_id)) |
|
return get_json_result(data=True) |
|
except Exception as e: |
|
return server_error_response(e) |
|
|
|
|
|
@manager.route('/switch', methods=['POST']) |
|
@login_required |
|
@validate_request("chunk_ids", "available_int", "doc_id") |
|
def switch(): |
|
req = request.json |
|
try: |
|
tenant_id = DocumentService.get_tenant_id(req["doc_id"]) |
|
if not tenant_id: |
|
return get_data_error_result(retmsg="Tenant not found!") |
|
if not ELASTICSEARCH.upsert([{"id": i, "available_int": int(req["available_int"])} for i in req["chunk_ids"]], |
|
search.index_name(tenant_id)): |
|
return get_data_error_result(retmsg="Index updating failure") |
|
return get_json_result(data=True) |
|
except Exception as e: |
|
return server_error_response(e) |
|
|
|
|
|
@manager.route('/rm', methods=['POST']) |
|
@login_required |
|
@validate_request("chunk_ids", "doc_id") |
|
def rm(): |
|
req = request.json |
|
try: |
|
if not ELASTICSEARCH.deleteByQuery( |
|
Q("ids", values=req["chunk_ids"]), search.index_name(current_user.id)): |
|
return get_data_error_result(retmsg="Index updating failure") |
|
e, doc = DocumentService.get_by_id(req["doc_id"]) |
|
if not e: |
|
return get_data_error_result(retmsg="Document not found!") |
|
deleted_chunk_ids = req["chunk_ids"] |
|
chunk_number = len(deleted_chunk_ids) |
|
DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0) |
|
return get_json_result(data=True) |
|
except Exception as e: |
|
return server_error_response(e) |
|
|
|
|
|
@manager.route('/create', methods=['POST']) |
|
@login_required |
|
@validate_request("doc_id", "content_with_weight") |
|
def create(): |
|
req = request.json |
|
md5 = hashlib.md5() |
|
md5.update((req["content_with_weight"] + req["doc_id"]).encode("utf-8")) |
|
chunck_id = md5.hexdigest() |
|
d = {"id": chunck_id, "content_ltks": rag_tokenizer.tokenize(req["content_with_weight"]), |
|
"content_with_weight": req["content_with_weight"]} |
|
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"]) |
|
d["important_kwd"] = req.get("important_kwd", []) |
|
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req.get("important_kwd", []))) |
|
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19] |
|
d["create_timestamp_flt"] = datetime.datetime.now().timestamp() |
|
|
|
try: |
|
e, doc = DocumentService.get_by_id(req["doc_id"]) |
|
if not e: |
|
return get_data_error_result(retmsg="Document not found!") |
|
d["kb_id"] = [doc.kb_id] |
|
d["docnm_kwd"] = doc.name |
|
d["doc_id"] = doc.id |
|
|
|
tenant_id = DocumentService.get_tenant_id(req["doc_id"]) |
|
if not tenant_id: |
|
return get_data_error_result(retmsg="Tenant not found!") |
|
|
|
embd_id = DocumentService.get_embd_id(req["doc_id"]) |
|
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING.value, embd_id) |
|
|
|
v, c = embd_mdl.encode([doc.name, req["content_with_weight"]]) |
|
v = 0.1 * v[0] + 0.9 * v[1] |
|
d["q_%d_vec" % len(v)] = v.tolist() |
|
ELASTICSEARCH.upsert([d], search.index_name(tenant_id)) |
|
|
|
DocumentService.increment_chunk_num( |
|
doc.id, doc.kb_id, c, 1, 0) |
|
return get_json_result(data={"chunk_id": chunck_id}) |
|
except Exception as e: |
|
return server_error_response(e) |
|
|
|
|
|
@manager.route('/retrieval_test', methods=['POST']) |
|
@login_required |
|
@validate_request("kb_id", "question") |
|
def retrieval_test(): |
|
req = request.json |
|
page = int(req.get("page", 1)) |
|
size = int(req.get("size", 30)) |
|
question = req["question"] |
|
kb_id = req["kb_id"] |
|
if isinstance(kb_id, str): kb_id = [kb_id] |
|
doc_ids = req.get("doc_ids", []) |
|
similarity_threshold = float(req.get("similarity_threshold", 0.0)) |
|
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3)) |
|
top = int(req.get("top_k", 1024)) |
|
|
|
try: |
|
tenants = UserTenantService.query(user_id=current_user.id) |
|
for kid in kb_id: |
|
for tenant in tenants: |
|
if KnowledgebaseService.query( |
|
tenant_id=tenant.tenant_id, id=kid): |
|
break |
|
else: |
|
return get_json_result( |
|
data=False, retmsg=f'Only owner of knowledgebase authorized for this operation.', |
|
retcode=RetCode.OPERATING_ERROR) |
|
|
|
e, kb = KnowledgebaseService.get_by_id(kb_id[0]) |
|
if not e: |
|
return get_data_error_result(retmsg="Knowledgebase not found!") |
|
|
|
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id) |
|
|
|
rerank_mdl = None |
|
if req.get("rerank_id"): |
|
rerank_mdl = LLMBundle(kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"]) |
|
|
|
if req.get("keyword", False): |
|
chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT) |
|
question += keyword_extraction(chat_mdl, question) |
|
|
|
retr = retrievaler if kb.parser_id != ParserType.KG else kg_retrievaler |
|
ranks = retr.retrieval(question, embd_mdl, kb.tenant_id, kb_id, page, size, |
|
similarity_threshold, vector_similarity_weight, top, |
|
doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight")) |
|
for c in ranks["chunks"]: |
|
if "vector" in c: |
|
del c["vector"] |
|
|
|
return get_json_result(data=ranks) |
|
except Exception as e: |
|
if str(e).find("not_found") > 0: |
|
return get_json_result(data=False, retmsg=f'No chunk found! Check the chunk status please!', |
|
retcode=RetCode.DATA_ERROR) |
|
return server_error_response(e) |
|
|
|
|
|
@manager.route('/knowledge_graph', methods=['GET']) |
|
@login_required |
|
def knowledge_graph(): |
|
doc_id = request.args["doc_id"] |
|
req = { |
|
"doc_ids":[doc_id], |
|
"knowledge_graph_kwd": ["graph", "mind_map"] |
|
} |
|
tenant_id = DocumentService.get_tenant_id(doc_id) |
|
sres = retrievaler.search(req, search.index_name(tenant_id)) |
|
obj = {"graph": {}, "mind_map": {}} |
|
for id in sres.ids[:2]: |
|
ty = sres.field[id]["knowledge_graph_kwd"] |
|
try: |
|
content_json = json.loads(sres.field[id]["content_with_weight"]) |
|
except Exception as e: |
|
continue |
|
|
|
if ty == 'mind_map': |
|
node_dict = {} |
|
|
|
def repeat_deal(content_json, node_dict): |
|
if 'id' in content_json: |
|
if content_json['id'] in node_dict: |
|
node_name = content_json['id'] |
|
content_json['id'] += f"({node_dict[content_json['id']]})" |
|
node_dict[node_name] += 1 |
|
else: |
|
node_dict[content_json['id']] = 1 |
|
if 'children' in content_json and content_json['children']: |
|
for item in content_json['children']: |
|
repeat_deal(item, node_dict) |
|
|
|
repeat_deal(content_json, node_dict) |
|
|
|
obj[ty] = content_json |
|
|
|
return get_json_result(data=obj) |
|
|
|
|