|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import re | 
					
						
						|  |  | 
					
						
						|  | from openai.lib.azure import AzureOpenAI | 
					
						
						|  | from zhipuai import ZhipuAI | 
					
						
						|  | from dashscope import Generation | 
					
						
						|  | from abc import ABC | 
					
						
						|  | from openai import OpenAI | 
					
						
						|  | import openai | 
					
						
						|  | from ollama import Client | 
					
						
						|  | from rag.nlp import is_english | 
					
						
						|  | from rag.utils import num_tokens_from_string | 
					
						
						|  | from groq import Groq | 
					
						
						|  | import os | 
					
						
						|  | import json | 
					
						
						|  | import requests | 
					
						
						|  | import asyncio | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Base(ABC): | 
					
						
						|  | def __init__(self, key, model_name, base_url): | 
					
						
						|  | timeout = int(os.environ.get('LM_TIMEOUT_SECONDS', 600)) | 
					
						
						|  | self.client = OpenAI(api_key=key, base_url=base_url, timeout=timeout) | 
					
						
						|  | self.model_name = model_name | 
					
						
						|  |  | 
					
						
						|  | def chat(self, system, history, gen_conf): | 
					
						
						|  | if system: | 
					
						
						|  | history.insert(0, {"role": "system", "content": system}) | 
					
						
						|  | try: | 
					
						
						|  | response = self.client.chat.completions.create( | 
					
						
						|  | model=self.model_name, | 
					
						
						|  | messages=history, | 
					
						
						|  | **gen_conf) | 
					
						
						|  | ans = response.choices[0].message.content.strip() | 
					
						
						|  | if response.choices[0].finish_reason == "length": | 
					
						
						|  | ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | 
					
						
						|  | [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | 
					
						
						|  | return ans, response.usage.total_tokens | 
					
						
						|  | except openai.APIError as e: | 
					
						
						|  | return "**ERROR**: " + str(e), 0 | 
					
						
						|  |  | 
					
						
						|  | def chat_streamly(self, system, history, gen_conf): | 
					
						
						|  | if system: | 
					
						
						|  | history.insert(0, {"role": "system", "content": system}) | 
					
						
						|  | ans = "" | 
					
						
						|  | total_tokens = 0 | 
					
						
						|  | try: | 
					
						
						|  | response = self.client.chat.completions.create( | 
					
						
						|  | model=self.model_name, | 
					
						
						|  | messages=history, | 
					
						
						|  | stream=True, | 
					
						
						|  | **gen_conf) | 
					
						
						|  | for resp in response: | 
					
						
						|  | if not resp.choices: continue | 
					
						
						|  | if not resp.choices[0].delta.content: | 
					
						
						|  | resp.choices[0].delta.content = "" | 
					
						
						|  | ans += resp.choices[0].delta.content | 
					
						
						|  |  | 
					
						
						|  | if not hasattr(resp, "usage") or not resp.usage: | 
					
						
						|  | total_tokens = ( | 
					
						
						|  | total_tokens | 
					
						
						|  | + num_tokens_from_string(resp.choices[0].delta.content) | 
					
						
						|  | ) | 
					
						
						|  | elif isinstance(resp.usage, dict): | 
					
						
						|  | total_tokens = resp.usage.get("total_tokens", total_tokens) | 
					
						
						|  | else: total_tokens = resp.usage.total_tokens | 
					
						
						|  |  | 
					
						
						|  | if resp.choices[0].finish_reason == "length": | 
					
						
						|  | ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | 
					
						
						|  | [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | 
					
						
						|  | yield ans | 
					
						
						|  |  | 
					
						
						|  | except openai.APIError as e: | 
					
						
						|  | yield ans + "\n**ERROR**: " + str(e) | 
					
						
						|  |  | 
					
						
						|  | yield total_tokens | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GptTurbo(Base): | 
					
						
						|  | def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"): | 
					
						
						|  | if not base_url: base_url = "https://api.openai.com/v1" | 
					
						
						|  | super().__init__(key, model_name, base_url) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MoonshotChat(Base): | 
					
						
						|  | def __init__(self, key, model_name="moonshot-v1-8k", base_url="https://api.moonshot.cn/v1"): | 
					
						
						|  | if not base_url: base_url = "https://api.moonshot.cn/v1" | 
					
						
						|  | super().__init__(key, model_name, base_url) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class XinferenceChat(Base): | 
					
						
						|  | def __init__(self, key=None, model_name="", base_url=""): | 
					
						
						|  | if not base_url: | 
					
						
						|  | raise ValueError("Local llm url cannot be None") | 
					
						
						|  | if base_url.split("/")[-1] != "v1": | 
					
						
						|  | base_url = os.path.join(base_url, "v1") | 
					
						
						|  | super().__init__(key, model_name, base_url) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class HuggingFaceChat(Base): | 
					
						
						|  | def __init__(self, key=None, model_name="", base_url=""): | 
					
						
						|  | if not base_url: | 
					
						
						|  | raise ValueError("Local llm url cannot be None") | 
					
						
						|  | if base_url.split("/")[-1] != "v1": | 
					
						
						|  | base_url = os.path.join(base_url, "v1") | 
					
						
						|  | super().__init__(key, model_name, base_url) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DeepSeekChat(Base): | 
					
						
						|  | def __init__(self, key, model_name="deepseek-chat", base_url="https://api.deepseek.com/v1"): | 
					
						
						|  | if not base_url: base_url = "https://api.deepseek.com/v1" | 
					
						
						|  | super().__init__(key, model_name, base_url) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AzureChat(Base): | 
					
						
						|  | def __init__(self, key, model_name, **kwargs): | 
					
						
						|  | api_key = json.loads(key).get('api_key', '') | 
					
						
						|  | api_version = json.loads(key).get('api_version', '2024-02-01') | 
					
						
						|  | self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version) | 
					
						
						|  | self.model_name = model_name | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BaiChuanChat(Base): | 
					
						
						|  | def __init__(self, key, model_name="Baichuan3-Turbo", base_url="https://api.baichuan-ai.com/v1"): | 
					
						
						|  | if not base_url: | 
					
						
						|  | base_url = "https://api.baichuan-ai.com/v1" | 
					
						
						|  | super().__init__(key, model_name, base_url) | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def _format_params(params): | 
					
						
						|  | return { | 
					
						
						|  | "temperature": params.get("temperature", 0.3), | 
					
						
						|  | "max_tokens": params.get("max_tokens", 2048), | 
					
						
						|  | "top_p": params.get("top_p", 0.85), | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | def chat(self, system, history, gen_conf): | 
					
						
						|  | if system: | 
					
						
						|  | history.insert(0, {"role": "system", "content": system}) | 
					
						
						|  | try: | 
					
						
						|  | response = self.client.chat.completions.create( | 
					
						
						|  | model=self.model_name, | 
					
						
						|  | messages=history, | 
					
						
						|  | extra_body={ | 
					
						
						|  | "tools": [{ | 
					
						
						|  | "type": "web_search", | 
					
						
						|  | "web_search": { | 
					
						
						|  | "enable": True, | 
					
						
						|  | "search_mode": "performance_first" | 
					
						
						|  | } | 
					
						
						|  | }] | 
					
						
						|  | }, | 
					
						
						|  | **self._format_params(gen_conf)) | 
					
						
						|  | ans = response.choices[0].message.content.strip() | 
					
						
						|  | if response.choices[0].finish_reason == "length": | 
					
						
						|  | ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | 
					
						
						|  | [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | 
					
						
						|  | return ans, response.usage.total_tokens | 
					
						
						|  | except openai.APIError as e: | 
					
						
						|  | return "**ERROR**: " + str(e), 0 | 
					
						
						|  |  | 
					
						
						|  | def chat_streamly(self, system, history, gen_conf): | 
					
						
						|  | if system: | 
					
						
						|  | history.insert(0, {"role": "system", "content": system}) | 
					
						
						|  | ans = "" | 
					
						
						|  | total_tokens = 0 | 
					
						
						|  | try: | 
					
						
						|  | response = self.client.chat.completions.create( | 
					
						
						|  | model=self.model_name, | 
					
						
						|  | messages=history, | 
					
						
						|  | extra_body={ | 
					
						
						|  | "tools": [{ | 
					
						
						|  | "type": "web_search", | 
					
						
						|  | "web_search": { | 
					
						
						|  | "enable": True, | 
					
						
						|  | "search_mode": "performance_first" | 
					
						
						|  | } | 
					
						
						|  | }] | 
					
						
						|  | }, | 
					
						
						|  | stream=True, | 
					
						
						|  | **self._format_params(gen_conf)) | 
					
						
						|  | for resp in response: | 
					
						
						|  | if not resp.choices: continue | 
					
						
						|  | if not resp.choices[0].delta.content: | 
					
						
						|  | resp.choices[0].delta.content = "" | 
					
						
						|  | ans += resp.choices[0].delta.content | 
					
						
						|  | total_tokens = ( | 
					
						
						|  | ( | 
					
						
						|  | total_tokens | 
					
						
						|  | + num_tokens_from_string(resp.choices[0].delta.content) | 
					
						
						|  | ) | 
					
						
						|  | if not hasattr(resp, "usage") | 
					
						
						|  | else resp.usage["total_tokens"] | 
					
						
						|  | ) | 
					
						
						|  | if resp.choices[0].finish_reason == "length": | 
					
						
						|  | ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | 
					
						
						|  | [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | 
					
						
						|  | yield ans | 
					
						
						|  |  | 
					
						
						|  | except Exception as e: | 
					
						
						|  | yield ans + "\n**ERROR**: " + str(e) | 
					
						
						|  |  | 
					
						
						|  | yield total_tokens | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class QWenChat(Base): | 
					
						
						|  | def __init__(self, key, model_name=Generation.Models.qwen_turbo, **kwargs): | 
					
						
						|  | import dashscope | 
					
						
						|  | dashscope.api_key = key | 
					
						
						|  | self.model_name = model_name | 
					
						
						|  |  | 
					
						
						|  | def chat(self, system, history, gen_conf): | 
					
						
						|  | stream_flag = str(os.environ.get('QWEN_CHAT_BY_STREAM', 'true')).lower() == 'true' | 
					
						
						|  | if not stream_flag: | 
					
						
						|  | from http import HTTPStatus | 
					
						
						|  | if system: | 
					
						
						|  | history.insert(0, {"role": "system", "content": system}) | 
					
						
						|  |  | 
					
						
						|  | response = Generation.call( | 
					
						
						|  | self.model_name, | 
					
						
						|  | messages=history, | 
					
						
						|  | result_format='message', | 
					
						
						|  | **gen_conf | 
					
						
						|  | ) | 
					
						
						|  | ans = "" | 
					
						
						|  | tk_count = 0 | 
					
						
						|  | if response.status_code == HTTPStatus.OK: | 
					
						
						|  | ans += response.output.choices[0]['message']['content'] | 
					
						
						|  | tk_count += response.usage.total_tokens | 
					
						
						|  | if response.output.choices[0].get("finish_reason", "") == "length": | 
					
						
						|  | ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | 
					
						
						|  | [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | 
					
						
						|  | return ans, tk_count | 
					
						
						|  |  | 
					
						
						|  | return "**ERROR**: " + response.message, tk_count | 
					
						
						|  | else: | 
					
						
						|  | g = self._chat_streamly(system, history, gen_conf, incremental_output=True) | 
					
						
						|  | result_list = list(g) | 
					
						
						|  | error_msg_list = [item for item in result_list if str(item).find("**ERROR**") >= 0] | 
					
						
						|  | if len(error_msg_list) > 0: | 
					
						
						|  | return "**ERROR**: " + "".join(error_msg_list) , 0 | 
					
						
						|  | else: | 
					
						
						|  | return "".join(result_list[:-1]), result_list[-1] | 
					
						
						|  |  | 
					
						
						|  | def _chat_streamly(self, system, history, gen_conf, incremental_output=False): | 
					
						
						|  | from http import HTTPStatus | 
					
						
						|  | if system: | 
					
						
						|  | history.insert(0, {"role": "system", "content": system}) | 
					
						
						|  | ans = "" | 
					
						
						|  | tk_count = 0 | 
					
						
						|  | try: | 
					
						
						|  | response = Generation.call( | 
					
						
						|  | self.model_name, | 
					
						
						|  | messages=history, | 
					
						
						|  | result_format='message', | 
					
						
						|  | stream=True, | 
					
						
						|  | incremental_output=incremental_output, | 
					
						
						|  | **gen_conf | 
					
						
						|  | ) | 
					
						
						|  | for resp in response: | 
					
						
						|  | if resp.status_code == HTTPStatus.OK: | 
					
						
						|  | ans = resp.output.choices[0]['message']['content'] | 
					
						
						|  | tk_count = resp.usage.total_tokens | 
					
						
						|  | if resp.output.choices[0].get("finish_reason", "") == "length": | 
					
						
						|  | ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | 
					
						
						|  | [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | 
					
						
						|  | yield ans | 
					
						
						|  | else: | 
					
						
						|  | yield ans + "\n**ERROR**: " + resp.message if not re.search(r" (key|quota)", str(resp.message).lower()) else "Out of credit. Please set the API key in **settings > Model providers.**" | 
					
						
						|  | except Exception as e: | 
					
						
						|  | yield ans + "\n**ERROR**: " + str(e) | 
					
						
						|  |  | 
					
						
						|  | yield tk_count | 
					
						
						|  |  | 
					
						
						|  | def chat_streamly(self, system, history, gen_conf): | 
					
						
						|  | return self._chat_streamly(system, history, gen_conf) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ZhipuChat(Base): | 
					
						
						|  | def __init__(self, key, model_name="glm-3-turbo", **kwargs): | 
					
						
						|  | self.client = ZhipuAI(api_key=key) | 
					
						
						|  | self.model_name = model_name | 
					
						
						|  |  | 
					
						
						|  | def chat(self, system, history, gen_conf): | 
					
						
						|  | if system: | 
					
						
						|  | history.insert(0, {"role": "system", "content": system}) | 
					
						
						|  | try: | 
					
						
						|  | if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"] | 
					
						
						|  | if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"] | 
					
						
						|  | response = self.client.chat.completions.create( | 
					
						
						|  | model=self.model_name, | 
					
						
						|  | messages=history, | 
					
						
						|  | **gen_conf | 
					
						
						|  | ) | 
					
						
						|  | ans = response.choices[0].message.content.strip() | 
					
						
						|  | if response.choices[0].finish_reason == "length": | 
					
						
						|  | ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | 
					
						
						|  | [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | 
					
						
						|  | return ans, response.usage.total_tokens | 
					
						
						|  | except Exception as e: | 
					
						
						|  | return "**ERROR**: " + str(e), 0 | 
					
						
						|  |  | 
					
						
						|  | def chat_streamly(self, system, history, gen_conf): | 
					
						
						|  | if system: | 
					
						
						|  | history.insert(0, {"role": "system", "content": system}) | 
					
						
						|  | if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"] | 
					
						
						|  | if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"] | 
					
						
						|  | ans = "" | 
					
						
						|  | tk_count = 0 | 
					
						
						|  | try: | 
					
						
						|  | response = self.client.chat.completions.create( | 
					
						
						|  | model=self.model_name, | 
					
						
						|  | messages=history, | 
					
						
						|  | stream=True, | 
					
						
						|  | **gen_conf | 
					
						
						|  | ) | 
					
						
						|  | for resp in response: | 
					
						
						|  | if not resp.choices[0].delta.content: continue | 
					
						
						|  | delta = resp.choices[0].delta.content | 
					
						
						|  | ans += delta | 
					
						
						|  | if resp.choices[0].finish_reason == "length": | 
					
						
						|  | ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | 
					
						
						|  | [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | 
					
						
						|  | tk_count = resp.usage.total_tokens | 
					
						
						|  | if resp.choices[0].finish_reason == "stop": tk_count = resp.usage.total_tokens | 
					
						
						|  | yield ans | 
					
						
						|  | except Exception as e: | 
					
						
						|  | yield ans + "\n**ERROR**: " + str(e) | 
					
						
						|  |  | 
					
						
						|  | yield tk_count | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class OllamaChat(Base): | 
					
						
						|  | def __init__(self, key, model_name, **kwargs): | 
					
						
						|  | self.client = Client(host=kwargs["base_url"]) | 
					
						
						|  | self.model_name = model_name | 
					
						
						|  |  | 
					
						
						|  | def chat(self, system, history, gen_conf): | 
					
						
						|  | if system: | 
					
						
						|  | history.insert(0, {"role": "system", "content": system}) | 
					
						
						|  | try: | 
					
						
						|  | options = {} | 
					
						
						|  | if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"] | 
					
						
						|  | if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"] | 
					
						
						|  | if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"] | 
					
						
						|  | if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"] | 
					
						
						|  | if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"] | 
					
						
						|  | response = self.client.chat( | 
					
						
						|  | model=self.model_name, | 
					
						
						|  | messages=history, | 
					
						
						|  | options=options, | 
					
						
						|  | keep_alive=-1 | 
					
						
						|  | ) | 
					
						
						|  | ans = response["message"]["content"].strip() | 
					
						
						|  | return ans, response["eval_count"] + response.get("prompt_eval_count", 0) | 
					
						
						|  | except Exception as e: | 
					
						
						|  | return "**ERROR**: " + str(e), 0 | 
					
						
						|  |  | 
					
						
						|  | def chat_streamly(self, system, history, gen_conf): | 
					
						
						|  | if system: | 
					
						
						|  | history.insert(0, {"role": "system", "content": system}) | 
					
						
						|  | options = {} | 
					
						
						|  | if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"] | 
					
						
						|  | if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"] | 
					
						
						|  | if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"] | 
					
						
						|  | if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"] | 
					
						
						|  | if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"] | 
					
						
						|  | ans = "" | 
					
						
						|  | try: | 
					
						
						|  | response = self.client.chat( | 
					
						
						|  | model=self.model_name, | 
					
						
						|  | messages=history, | 
					
						
						|  | stream=True, | 
					
						
						|  | options=options, | 
					
						
						|  | keep_alive=-1 | 
					
						
						|  | ) | 
					
						
						|  | for resp in response: | 
					
						
						|  | if resp["done"]: | 
					
						
						|  | yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0) | 
					
						
						|  | ans += resp["message"]["content"] | 
					
						
						|  | yield ans | 
					
						
						|  | except Exception as e: | 
					
						
						|  | yield ans + "\n**ERROR**: " + str(e) | 
					
						
						|  | yield 0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LocalAIChat(Base): | 
					
						
						|  | def __init__(self, key, model_name, base_url): | 
					
						
						|  | if not base_url: | 
					
						
						|  | raise ValueError("Local llm url cannot be None") | 
					
						
						|  | if base_url.split("/")[-1] != "v1": | 
					
						
						|  | base_url = os.path.join(base_url, "v1") | 
					
						
						|  | self.client = OpenAI(api_key="empty", base_url=base_url) | 
					
						
						|  | self.model_name = model_name.split("___")[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LocalLLM(Base): | 
					
						
						|  | class RPCProxy: | 
					
						
						|  | def __init__(self, host, port): | 
					
						
						|  | self.host = host | 
					
						
						|  | self.port = int(port) | 
					
						
						|  | self.__conn() | 
					
						
						|  |  | 
					
						
						|  | def __conn(self): | 
					
						
						|  | from multiprocessing.connection import Client | 
					
						
						|  |  | 
					
						
						|  | self._connection = Client( | 
					
						
						|  | (self.host, self.port), authkey=b"infiniflow-token4kevinhu" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def __getattr__(self, name): | 
					
						
						|  | import pickle | 
					
						
						|  |  | 
					
						
						|  | def do_rpc(*args, **kwargs): | 
					
						
						|  | for _ in range(3): | 
					
						
						|  | try: | 
					
						
						|  | self._connection.send(pickle.dumps((name, args, kwargs))) | 
					
						
						|  | return pickle.loads(self._connection.recv()) | 
					
						
						|  | except Exception as e: | 
					
						
						|  | self.__conn() | 
					
						
						|  | raise Exception("RPC connection lost!") | 
					
						
						|  |  | 
					
						
						|  | return do_rpc | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, key, model_name): | 
					
						
						|  | from jina import Client | 
					
						
						|  |  | 
					
						
						|  | self.client = Client(port=12345, protocol="grpc", asyncio=True) | 
					
						
						|  |  | 
					
						
						|  | def _prepare_prompt(self, system, history, gen_conf): | 
					
						
						|  | from rag.svr.jina_server import Prompt, Generation | 
					
						
						|  | if system: | 
					
						
						|  | history.insert(0, {"role": "system", "content": system}) | 
					
						
						|  | if "max_tokens" in gen_conf: | 
					
						
						|  | gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens") | 
					
						
						|  | return Prompt(message=history, gen_conf=gen_conf) | 
					
						
						|  |  | 
					
						
						|  | def _stream_response(self, endpoint, prompt): | 
					
						
						|  | from rag.svr.jina_server import Prompt, Generation | 
					
						
						|  | answer = "" | 
					
						
						|  | try: | 
					
						
						|  | res = self.client.stream_doc( | 
					
						
						|  | on=endpoint, inputs=prompt, return_type=Generation | 
					
						
						|  | ) | 
					
						
						|  | loop = asyncio.get_event_loop() | 
					
						
						|  | try: | 
					
						
						|  | while True: | 
					
						
						|  | answer = loop.run_until_complete(res.__anext__()).text | 
					
						
						|  | yield answer | 
					
						
						|  | except StopAsyncIteration: | 
					
						
						|  | pass | 
					
						
						|  | except Exception as e: | 
					
						
						|  | yield answer + "\n**ERROR**: " + str(e) | 
					
						
						|  | yield num_tokens_from_string(answer) | 
					
						
						|  |  | 
					
						
						|  | def chat(self, system, history, gen_conf): | 
					
						
						|  | prompt = self._prepare_prompt(system, history, gen_conf) | 
					
						
						|  | chat_gen = self._stream_response("/chat", prompt) | 
					
						
						|  | ans = next(chat_gen) | 
					
						
						|  | total_tokens = next(chat_gen) | 
					
						
						|  | return ans, total_tokens | 
					
						
						|  |  | 
					
						
						|  | def chat_streamly(self, system, history, gen_conf): | 
					
						
						|  | prompt = self._prepare_prompt(system, history, gen_conf) | 
					
						
						|  | return self._stream_response("/stream", prompt) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class VolcEngineChat(Base): | 
					
						
						|  | def __init__(self, key, model_name, base_url='https://ark.cn-beijing.volces.com/api/v3'): | 
					
						
						|  | """ | 
					
						
						|  | Since do not want to modify the original database fields, and the VolcEngine authentication method is quite special, | 
					
						
						|  | Assemble ark_api_key, ep_id into api_key, store it as a dictionary type, and parse it for use | 
					
						
						|  | model_name is for display only | 
					
						
						|  | """ | 
					
						
						|  | base_url = base_url if base_url else 'https://ark.cn-beijing.volces.com/api/v3' | 
					
						
						|  | ark_api_key = json.loads(key).get('ark_api_key', '') | 
					
						
						|  | model_name = json.loads(key).get('ep_id', '') + json.loads(key).get('endpoint_id', '') | 
					
						
						|  | super().__init__(ark_api_key, model_name, base_url) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MiniMaxChat(Base): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | key, | 
					
						
						|  | model_name, | 
					
						
						|  | base_url="https://api.minimax.chat/v1/text/chatcompletion_v2", | 
					
						
						|  | ): | 
					
						
						|  | if not base_url: | 
					
						
						|  | base_url = "https://api.minimax.chat/v1/text/chatcompletion_v2" | 
					
						
						|  | self.base_url = base_url | 
					
						
						|  | self.model_name = model_name | 
					
						
						|  | self.api_key = key | 
					
						
						|  |  | 
					
						
						|  | def chat(self, system, history, gen_conf): | 
					
						
						|  | if system: | 
					
						
						|  | history.insert(0, {"role": "system", "content": system}) | 
					
						
						|  | for k in list(gen_conf.keys()): | 
					
						
						|  | if k not in ["temperature", "top_p", "max_tokens"]: | 
					
						
						|  | del gen_conf[k] | 
					
						
						|  | headers = { | 
					
						
						|  | "Authorization": f"Bearer {self.api_key}", | 
					
						
						|  | "Content-Type": "application/json", | 
					
						
						|  | } | 
					
						
						|  | payload = json.dumps( | 
					
						
						|  | {"model": self.model_name, "messages": history, **gen_conf} | 
					
						
						|  | ) | 
					
						
						|  | try: | 
					
						
						|  | response = requests.request( | 
					
						
						|  | "POST", url=self.base_url, headers=headers, data=payload | 
					
						
						|  | ) | 
					
						
						|  | response = response.json() | 
					
						
						|  | ans = response["choices"][0]["message"]["content"].strip() | 
					
						
						|  | if response["choices"][0]["finish_reason"] == "length": | 
					
						
						|  | ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | 
					
						
						|  | [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | 
					
						
						|  | return ans, response["usage"]["total_tokens"] | 
					
						
						|  | except Exception as e: | 
					
						
						|  | return "**ERROR**: " + str(e), 0 | 
					
						
						|  |  | 
					
						
						|  | def chat_streamly(self, system, history, gen_conf): | 
					
						
						|  | if system: | 
					
						
						|  | history.insert(0, {"role": "system", "content": system}) | 
					
						
						|  | ans = "" | 
					
						
						|  | total_tokens = 0 | 
					
						
						|  | try: | 
					
						
						|  | headers = { | 
					
						
						|  | "Authorization": f"Bearer {self.api_key}", | 
					
						
						|  | "Content-Type": "application/json", | 
					
						
						|  | } | 
					
						
						|  | payload = json.dumps( | 
					
						
						|  | { | 
					
						
						|  | "model": self.model_name, | 
					
						
						|  | "messages": history, | 
					
						
						|  | "stream": True, | 
					
						
						|  | **gen_conf, | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | response = requests.request( | 
					
						
						|  | "POST", | 
					
						
						|  | url=self.base_url, | 
					
						
						|  | headers=headers, | 
					
						
						|  | data=payload, | 
					
						
						|  | ) | 
					
						
						|  | for resp in response.text.split("\n\n")[:-1]: | 
					
						
						|  | resp = json.loads(resp[6:]) | 
					
						
						|  | text = "" | 
					
						
						|  | if "choices" in resp and "delta" in resp["choices"][0]: | 
					
						
						|  | text = resp["choices"][0]["delta"]["content"] | 
					
						
						|  | ans += text | 
					
						
						|  | total_tokens = ( | 
					
						
						|  | total_tokens + num_tokens_from_string(text) | 
					
						
						|  | if "usage" not in resp | 
					
						
						|  | else resp["usage"]["total_tokens"] | 
					
						
						|  | ) | 
					
						
						|  | yield ans | 
					
						
						|  |  | 
					
						
						|  | except Exception as e: | 
					
						
						|  | yield ans + "\n**ERROR**: " + str(e) | 
					
						
						|  |  | 
					
						
						|  | yield total_tokens | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MistralChat(Base): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, key, model_name, base_url=None): | 
					
						
						|  | from mistralai.client import MistralClient | 
					
						
						|  | self.client = MistralClient(api_key=key) | 
					
						
						|  | self.model_name = model_name | 
					
						
						|  |  | 
					
						
						|  | def chat(self, system, history, gen_conf): | 
					
						
						|  | if system: | 
					
						
						|  | history.insert(0, {"role": "system", "content": system}) | 
					
						
						|  | for k in list(gen_conf.keys()): | 
					
						
						|  | if k not in ["temperature", "top_p", "max_tokens"]: | 
					
						
						|  | del gen_conf[k] | 
					
						
						|  | try: | 
					
						
						|  | response = self.client.chat( | 
					
						
						|  | model=self.model_name, | 
					
						
						|  | messages=history, | 
					
						
						|  | **gen_conf) | 
					
						
						|  | ans = response.choices[0].message.content | 
					
						
						|  | if response.choices[0].finish_reason == "length": | 
					
						
						|  | ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | 
					
						
						|  | [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | 
					
						
						|  | return ans, response.usage.total_tokens | 
					
						
						|  | except openai.APIError as e: | 
					
						
						|  | return "**ERROR**: " + str(e), 0 | 
					
						
						|  |  | 
					
						
						|  | def chat_streamly(self, system, history, gen_conf): | 
					
						
						|  | if system: | 
					
						
						|  | history.insert(0, {"role": "system", "content": system}) | 
					
						
						|  | for k in list(gen_conf.keys()): | 
					
						
						|  | if k not in ["temperature", "top_p", "max_tokens"]: | 
					
						
						|  | del gen_conf[k] | 
					
						
						|  | ans = "" | 
					
						
						|  | total_tokens = 0 | 
					
						
						|  | try: | 
					
						
						|  | response = self.client.chat_stream( | 
					
						
						|  | model=self.model_name, | 
					
						
						|  | messages=history, | 
					
						
						|  | **gen_conf) | 
					
						
						|  | for resp in response: | 
					
						
						|  | if not resp.choices or not resp.choices[0].delta.content: continue | 
					
						
						|  | ans += resp.choices[0].delta.content | 
					
						
						|  | total_tokens += 1 | 
					
						
						|  | if resp.choices[0].finish_reason == "length": | 
					
						
						|  | ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | 
					
						
						|  | [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | 
					
						
						|  | yield ans | 
					
						
						|  |  | 
					
						
						|  | except openai.APIError as e: | 
					
						
						|  | yield ans + "\n**ERROR**: " + str(e) | 
					
						
						|  |  | 
					
						
						|  | yield total_tokens | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BedrockChat(Base): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, key, model_name, **kwargs): | 
					
						
						|  | import boto3 | 
					
						
						|  | self.bedrock_ak = json.loads(key).get('bedrock_ak', '') | 
					
						
						|  | self.bedrock_sk = json.loads(key).get('bedrock_sk', '') | 
					
						
						|  | self.bedrock_region = json.loads(key).get('bedrock_region', '') | 
					
						
						|  | self.model_name = model_name | 
					
						
						|  | self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region, | 
					
						
						|  | aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk) | 
					
						
						|  |  | 
					
						
						|  | def chat(self, system, history, gen_conf): | 
					
						
						|  | from botocore.exceptions import ClientError | 
					
						
						|  | for k in list(gen_conf.keys()): | 
					
						
						|  | if k not in ["temperature", "top_p", "max_tokens"]: | 
					
						
						|  | del gen_conf[k] | 
					
						
						|  | if "max_tokens" in gen_conf: | 
					
						
						|  | gen_conf["maxTokens"] = gen_conf["max_tokens"] | 
					
						
						|  | _ = gen_conf.pop("max_tokens") | 
					
						
						|  | if "top_p" in gen_conf: | 
					
						
						|  | gen_conf["topP"] = gen_conf["top_p"] | 
					
						
						|  | _ = gen_conf.pop("top_p") | 
					
						
						|  | for item in history: | 
					
						
						|  | if not isinstance(item["content"], list) and not isinstance(item["content"], tuple): | 
					
						
						|  | item["content"] = [{"text": item["content"]}] | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  |  | 
					
						
						|  | response = self.client.converse( | 
					
						
						|  | modelId=self.model_name, | 
					
						
						|  | messages=history, | 
					
						
						|  | inferenceConfig=gen_conf, | 
					
						
						|  | system=[{"text": (system if system else "Answer the user's message.")}], | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ans = response["output"]["message"]["content"][0]["text"] | 
					
						
						|  | return ans, num_tokens_from_string(ans) | 
					
						
						|  |  | 
					
						
						|  | except (ClientError, Exception) as e: | 
					
						
						|  | return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0 | 
					
						
						|  |  | 
					
						
						|  | def chat_streamly(self, system, history, gen_conf): | 
					
						
						|  | from botocore.exceptions import ClientError | 
					
						
						|  | for k in list(gen_conf.keys()): | 
					
						
						|  | if k not in ["temperature", "top_p", "max_tokens"]: | 
					
						
						|  | del gen_conf[k] | 
					
						
						|  | if "max_tokens" in gen_conf: | 
					
						
						|  | gen_conf["maxTokens"] = gen_conf["max_tokens"] | 
					
						
						|  | _ = gen_conf.pop("max_tokens") | 
					
						
						|  | if "top_p" in gen_conf: | 
					
						
						|  | gen_conf["topP"] = gen_conf["top_p"] | 
					
						
						|  | _ = gen_conf.pop("top_p") | 
					
						
						|  | for item in history: | 
					
						
						|  | if not isinstance(item["content"], list) and not isinstance(item["content"], tuple): | 
					
						
						|  | item["content"] = [{"text": item["content"]}] | 
					
						
						|  |  | 
					
						
						|  | if self.model_name.split('.')[0] == 'ai21': | 
					
						
						|  | try: | 
					
						
						|  | response = self.client.converse( | 
					
						
						|  | modelId=self.model_name, | 
					
						
						|  | messages=history, | 
					
						
						|  | inferenceConfig=gen_conf, | 
					
						
						|  | system=[{"text": (system if system else "Answer the user's message.")}] | 
					
						
						|  | ) | 
					
						
						|  | ans = response["output"]["message"]["content"][0]["text"] | 
					
						
						|  | return ans, num_tokens_from_string(ans) | 
					
						
						|  |  | 
					
						
						|  | except (ClientError, Exception) as e: | 
					
						
						|  | return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0 | 
					
						
						|  |  | 
					
						
						|  | ans = "" | 
					
						
						|  | try: | 
					
						
						|  |  | 
					
						
						|  | streaming_response = self.client.converse_stream( | 
					
						
						|  | modelId=self.model_name, | 
					
						
						|  | messages=history, | 
					
						
						|  | inferenceConfig=gen_conf, | 
					
						
						|  | system=[{"text": (system if system else "Answer the user's message.")}] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for resp in streaming_response["stream"]: | 
					
						
						|  | if "contentBlockDelta" in resp: | 
					
						
						|  | ans += resp["contentBlockDelta"]["delta"]["text"] | 
					
						
						|  | yield ans | 
					
						
						|  |  | 
					
						
						|  | except (ClientError, Exception) as e: | 
					
						
						|  | yield ans + f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}" | 
					
						
						|  |  | 
					
						
						|  | yield num_tokens_from_string(ans) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GeminiChat(Base): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, key, model_name, base_url=None): | 
					
						
						|  | from google.generativeai import client, GenerativeModel | 
					
						
						|  |  | 
					
						
						|  | client.configure(api_key=key) | 
					
						
						|  | _client = client.get_default_generative_client() | 
					
						
						|  | self.model_name = 'models/' + model_name | 
					
						
						|  | self.model = GenerativeModel(model_name=self.model_name) | 
					
						
						|  | self.model._client = _client | 
					
						
						|  |  | 
					
						
						|  | def chat(self, system, history, gen_conf): | 
					
						
						|  | from google.generativeai.types import content_types | 
					
						
						|  |  | 
					
						
						|  | if system: | 
					
						
						|  | self.model._system_instruction = content_types.to_content(system) | 
					
						
						|  |  | 
					
						
						|  | if 'max_tokens' in gen_conf: | 
					
						
						|  | gen_conf['max_output_tokens'] = gen_conf['max_tokens'] | 
					
						
						|  | for k in list(gen_conf.keys()): | 
					
						
						|  | if k not in ["temperature", "top_p", "max_output_tokens"]: | 
					
						
						|  | del gen_conf[k] | 
					
						
						|  | for item in history: | 
					
						
						|  | if 'role' in item and item['role'] == 'assistant': | 
					
						
						|  | item['role'] = 'model' | 
					
						
						|  | if 'role' in item and item['role'] == 'system': | 
					
						
						|  | item['role'] = 'user' | 
					
						
						|  | if 'content' in item: | 
					
						
						|  | item['parts'] = item.pop('content') | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | response = self.model.generate_content( | 
					
						
						|  | history, | 
					
						
						|  | generation_config=gen_conf) | 
					
						
						|  | ans = response.text | 
					
						
						|  | return ans, response.usage_metadata.total_token_count | 
					
						
						|  | except Exception as e: | 
					
						
						|  | return "**ERROR**: " + str(e), 0 | 
					
						
						|  |  | 
					
						
						|  | def chat_streamly(self, system, history, gen_conf): | 
					
						
						|  | from google.generativeai.types import content_types | 
					
						
						|  |  | 
					
						
						|  | if system: | 
					
						
						|  | self.model._system_instruction = content_types.to_content(system) | 
					
						
						|  | if 'max_tokens' in gen_conf: | 
					
						
						|  | gen_conf['max_output_tokens'] = gen_conf['max_tokens'] | 
					
						
						|  | for k in list(gen_conf.keys()): | 
					
						
						|  | if k not in ["temperature", "top_p", "max_output_tokens"]: | 
					
						
						|  | del gen_conf[k] | 
					
						
						|  | for item in history: | 
					
						
						|  | if 'role' in item and item['role'] == 'assistant': | 
					
						
						|  | item['role'] = 'model' | 
					
						
						|  | if 'content' in item: | 
					
						
						|  | item['parts'] = item.pop('content') | 
					
						
						|  | ans = "" | 
					
						
						|  | try: | 
					
						
						|  | response = self.model.generate_content( | 
					
						
						|  | history, | 
					
						
						|  | generation_config=gen_conf, stream=True) | 
					
						
						|  | for resp in response: | 
					
						
						|  | ans += resp.text | 
					
						
						|  | yield ans | 
					
						
						|  |  | 
					
						
						|  | yield response._chunks[-1].usage_metadata.total_token_count | 
					
						
						|  | except Exception as e: | 
					
						
						|  | yield ans + "\n**ERROR**: " + str(e) | 
					
						
						|  |  | 
					
						
						|  | yield 0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GroqChat: | 
					
						
						|  | def __init__(self, key, model_name, base_url=''): | 
					
						
						|  | self.client = Groq(api_key=key) | 
					
						
						|  | self.model_name = model_name | 
					
						
						|  |  | 
					
						
						|  | def chat(self, system, history, gen_conf): | 
					
						
						|  | if system: | 
					
						
						|  | history.insert(0, {"role": "system", "content": system}) | 
					
						
						|  | for k in list(gen_conf.keys()): | 
					
						
						|  | if k not in ["temperature", "top_p", "max_tokens"]: | 
					
						
						|  | del gen_conf[k] | 
					
						
						|  | ans = "" | 
					
						
						|  | try: | 
					
						
						|  | response = self.client.chat.completions.create( | 
					
						
						|  | model=self.model_name, | 
					
						
						|  | messages=history, | 
					
						
						|  | **gen_conf | 
					
						
						|  | ) | 
					
						
						|  | ans = response.choices[0].message.content | 
					
						
						|  | if response.choices[0].finish_reason == "length": | 
					
						
						|  | ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | 
					
						
						|  | [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | 
					
						
						|  | return ans, response.usage.total_tokens | 
					
						
						|  | except Exception as e: | 
					
						
						|  | return ans + "\n**ERROR**: " + str(e), 0 | 
					
						
						|  |  | 
					
						
						|  | def chat_streamly(self, system, history, gen_conf): | 
					
						
						|  | if system: | 
					
						
						|  | history.insert(0, {"role": "system", "content": system}) | 
					
						
						|  | for k in list(gen_conf.keys()): | 
					
						
						|  | if k not in ["temperature", "top_p", "max_tokens"]: | 
					
						
						|  | del gen_conf[k] | 
					
						
						|  | ans = "" | 
					
						
						|  | total_tokens = 0 | 
					
						
						|  | try: | 
					
						
						|  | response = self.client.chat.completions.create( | 
					
						
						|  | model=self.model_name, | 
					
						
						|  | messages=history, | 
					
						
						|  | stream=True, | 
					
						
						|  | **gen_conf | 
					
						
						|  | ) | 
					
						
						|  | for resp in response: | 
					
						
						|  | if not resp.choices or not resp.choices[0].delta.content: | 
					
						
						|  | continue | 
					
						
						|  | ans += resp.choices[0].delta.content | 
					
						
						|  | total_tokens += 1 | 
					
						
						|  | if resp.choices[0].finish_reason == "length": | 
					
						
						|  | ans += "...\nFor the content length reason, it stopped, continue?" if is_english( | 
					
						
						|  | [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | 
					
						
						|  | yield ans | 
					
						
						|  |  | 
					
						
						|  | except Exception as e: | 
					
						
						|  | yield ans + "\n**ERROR**: " + str(e) | 
					
						
						|  |  | 
					
						
						|  | yield total_tokens | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class OpenRouterChat(Base): | 
					
						
						|  | def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1"): | 
					
						
						|  | if not base_url: | 
					
						
						|  | base_url = "https://openrouter.ai/api/v1" | 
					
						
						|  | super().__init__(key, model_name, base_url) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class StepFunChat(Base): | 
					
						
						|  | def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1"): | 
					
						
						|  | if not base_url: | 
					
						
						|  | base_url = "https://api.stepfun.com/v1" | 
					
						
						|  | super().__init__(key, model_name, base_url) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class NvidiaChat(Base): | 
					
						
						|  | def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1"): | 
					
						
						|  | if not base_url: | 
					
						
						|  | base_url = "https://integrate.api.nvidia.com/v1" | 
					
						
						|  | super().__init__(key, model_name, base_url) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LmStudioChat(Base): | 
					
						
						|  | def __init__(self, key, model_name, base_url): | 
					
						
						|  | if not base_url: | 
					
						
						|  | raise ValueError("Local llm url cannot be None") | 
					
						
						|  | if base_url.split("/")[-1] != "v1": | 
					
						
						|  | base_url = os.path.join(base_url, "v1") | 
					
						
						|  | self.client = OpenAI(api_key="lm-studio", base_url=base_url) | 
					
						
						|  | self.model_name = model_name | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class OpenAI_APIChat(Base): | 
					
						
						|  | def __init__(self, key, model_name, base_url): | 
					
						
						|  | if not base_url: | 
					
						
						|  | raise ValueError("url cannot be None") | 
					
						
						|  | if base_url.split("/")[-1] != "v1": | 
					
						
						|  | base_url = os.path.join(base_url, "v1") | 
					
						
						|  | model_name = model_name.split("___")[0] | 
					
						
						|  | super().__init__(key, model_name, base_url) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class CoHereChat(Base): | 
					
						
						|  | def __init__(self, key, model_name, base_url=""): | 
					
						
						|  | from cohere import Client | 
					
						
						|  |  | 
					
						
						|  | self.client = Client(api_key=key) | 
					
						
						|  | self.model_name = model_name | 
					
						
						|  |  | 
					
						
						|  | def chat(self, system, history, gen_conf): | 
					
						
						|  | if system: | 
					
						
						|  | history.insert(0, {"role": "system", "content": system}) | 
					
						
						|  | if "top_p" in gen_conf: | 
					
						
						|  | gen_conf["p"] = gen_conf.pop("top_p") | 
					
						
						|  | if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf: | 
					
						
						|  | gen_conf.pop("presence_penalty") | 
					
						
						|  | for item in history: | 
					
						
						|  | if "role" in item and item["role"] == "user": | 
					
						
						|  | item["role"] = "USER" | 
					
						
						|  | if "role" in item and item["role"] == "assistant": | 
					
						
						|  | item["role"] = "CHATBOT" | 
					
						
						|  | if "content" in item: | 
					
						
						|  | item["message"] = item.pop("content") | 
					
						
						|  | mes = history.pop()["message"] | 
					
						
						|  | ans = "" | 
					
						
						|  | try: | 
					
						
						|  | response = self.client.chat( | 
					
						
						|  | model=self.model_name, chat_history=history, message=mes, **gen_conf | 
					
						
						|  | ) | 
					
						
						|  | ans = response.text | 
					
						
						|  | if response.finish_reason == "MAX_TOKENS": | 
					
						
						|  | ans += ( | 
					
						
						|  | "...\nFor the content length reason, it stopped, continue?" | 
					
						
						|  | if is_english([ans]) | 
					
						
						|  | else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | 
					
						
						|  | ) | 
					
						
						|  | return ( | 
					
						
						|  | ans, | 
					
						
						|  | response.meta.tokens.input_tokens + response.meta.tokens.output_tokens, | 
					
						
						|  | ) | 
					
						
						|  | except Exception as e: | 
					
						
						|  | return ans + "\n**ERROR**: " + str(e), 0 | 
					
						
						|  |  | 
					
						
						|  | def chat_streamly(self, system, history, gen_conf): | 
					
						
						|  | if system: | 
					
						
						|  | history.insert(0, {"role": "system", "content": system}) | 
					
						
						|  | if "top_p" in gen_conf: | 
					
						
						|  | gen_conf["p"] = gen_conf.pop("top_p") | 
					
						
						|  | if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf: | 
					
						
						|  | gen_conf.pop("presence_penalty") | 
					
						
						|  | for item in history: | 
					
						
						|  | if "role" in item and item["role"] == "user": | 
					
						
						|  | item["role"] = "USER" | 
					
						
						|  | if "role" in item and item["role"] == "assistant": | 
					
						
						|  | item["role"] = "CHATBOT" | 
					
						
						|  | if "content" in item: | 
					
						
						|  | item["message"] = item.pop("content") | 
					
						
						|  | mes = history.pop()["message"] | 
					
						
						|  | ans = "" | 
					
						
						|  | total_tokens = 0 | 
					
						
						|  | try: | 
					
						
						|  | response = self.client.chat_stream( | 
					
						
						|  | model=self.model_name, chat_history=history, message=mes, **gen_conf | 
					
						
						|  | ) | 
					
						
						|  | for resp in response: | 
					
						
						|  | if resp.event_type == "text-generation": | 
					
						
						|  | ans += resp.text | 
					
						
						|  | total_tokens += num_tokens_from_string(resp.text) | 
					
						
						|  | elif resp.event_type == "stream-end": | 
					
						
						|  | if resp.finish_reason == "MAX_TOKENS": | 
					
						
						|  | ans += ( | 
					
						
						|  | "...\nFor the content length reason, it stopped, continue?" | 
					
						
						|  | if is_english([ans]) | 
					
						
						|  | else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | 
					
						
						|  | ) | 
					
						
						|  | yield ans | 
					
						
						|  |  | 
					
						
						|  | except Exception as e: | 
					
						
						|  | yield ans + "\n**ERROR**: " + str(e) | 
					
						
						|  |  | 
					
						
						|  | yield total_tokens | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LeptonAIChat(Base): | 
					
						
						|  | def __init__(self, key, model_name, base_url=None): | 
					
						
						|  | if not base_url: | 
					
						
						|  | base_url = os.path.join("https://" + model_name + ".lepton.run", "api", "v1") | 
					
						
						|  | super().__init__(key, model_name, base_url) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TogetherAIChat(Base): | 
					
						
						|  | def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"): | 
					
						
						|  | if not base_url: | 
					
						
						|  | base_url = "https://api.together.xyz/v1" | 
					
						
						|  | super().__init__(key, model_name, base_url) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PerfXCloudChat(Base): | 
					
						
						|  | def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"): | 
					
						
						|  | if not base_url: | 
					
						
						|  | base_url = "https://cloud.perfxlab.cn/v1" | 
					
						
						|  | super().__init__(key, model_name, base_url) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class UpstageChat(Base): | 
					
						
						|  | def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"): | 
					
						
						|  | if not base_url: | 
					
						
						|  | base_url = "https://api.upstage.ai/v1/solar" | 
					
						
						|  | super().__init__(key, model_name, base_url) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class NovitaAIChat(Base): | 
					
						
						|  | def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai"): | 
					
						
						|  | if not base_url: | 
					
						
						|  | base_url = "https://api.novita.ai/v3/openai" | 
					
						
						|  | super().__init__(key, model_name, base_url) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SILICONFLOWChat(Base): | 
					
						
						|  | def __init__(self, key, model_name, base_url="https://api.siliconflow.cn/v1"): | 
					
						
						|  | if not base_url: | 
					
						
						|  | base_url = "https://api.siliconflow.cn/v1" | 
					
						
						|  | super().__init__(key, model_name, base_url) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class YiChat(Base): | 
					
						
						|  | def __init__(self, key, model_name, base_url="https://api.lingyiwanwu.com/v1"): | 
					
						
						|  | if not base_url: | 
					
						
						|  | base_url = "https://api.lingyiwanwu.com/v1" | 
					
						
						|  | super().__init__(key, model_name, base_url) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ReplicateChat(Base): | 
					
						
						|  | def __init__(self, key, model_name, base_url=None): | 
					
						
						|  | from replicate.client import Client | 
					
						
						|  |  | 
					
						
						|  | self.model_name = model_name | 
					
						
						|  | self.client = Client(api_token=key) | 
					
						
						|  | self.system = "" | 
					
						
						|  |  | 
					
						
						|  | def chat(self, system, history, gen_conf): | 
					
						
						|  | if "max_tokens" in gen_conf: | 
					
						
						|  | gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens") | 
					
						
						|  | if system: | 
					
						
						|  | self.system = system | 
					
						
						|  | prompt = "\n".join( | 
					
						
						|  | [item["role"] + ":" + item["content"] for item in history[-5:]] | 
					
						
						|  | ) | 
					
						
						|  | ans = "" | 
					
						
						|  | try: | 
					
						
						|  | response = self.client.run( | 
					
						
						|  | self.model_name, | 
					
						
						|  | input={"system_prompt": self.system, "prompt": prompt, **gen_conf}, | 
					
						
						|  | ) | 
					
						
						|  | ans = "".join(response) | 
					
						
						|  | return ans, num_tokens_from_string(ans) | 
					
						
						|  | except Exception as e: | 
					
						
						|  | return ans + "\n**ERROR**: " + str(e), 0 | 
					
						
						|  |  | 
					
						
						|  | def chat_streamly(self, system, history, gen_conf): | 
					
						
						|  | if "max_tokens" in gen_conf: | 
					
						
						|  | gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens") | 
					
						
						|  | if system: | 
					
						
						|  | self.system = system | 
					
						
						|  | prompt = "\n".join( | 
					
						
						|  | [item["role"] + ":" + item["content"] for item in history[-5:]] | 
					
						
						|  | ) | 
					
						
						|  | ans = "" | 
					
						
						|  | try: | 
					
						
						|  | response = self.client.run( | 
					
						
						|  | self.model_name, | 
					
						
						|  | input={"system_prompt": self.system, "prompt": prompt, **gen_conf}, | 
					
						
						|  | ) | 
					
						
						|  | for resp in response: | 
					
						
						|  | ans += resp | 
					
						
						|  | yield ans | 
					
						
						|  |  | 
					
						
						|  | except Exception as e: | 
					
						
						|  | yield ans + "\n**ERROR**: " + str(e) | 
					
						
						|  |  | 
					
						
						|  | yield num_tokens_from_string(ans) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class HunyuanChat(Base): | 
					
						
						|  | def __init__(self, key, model_name, base_url=None): | 
					
						
						|  | from tencentcloud.common import credential | 
					
						
						|  | from tencentcloud.hunyuan.v20230901 import hunyuan_client | 
					
						
						|  |  | 
					
						
						|  | key = json.loads(key) | 
					
						
						|  | sid = key.get("hunyuan_sid", "") | 
					
						
						|  | sk = key.get("hunyuan_sk", "") | 
					
						
						|  | cred = credential.Credential(sid, sk) | 
					
						
						|  | self.model_name = model_name | 
					
						
						|  | self.client = hunyuan_client.HunyuanClient(cred, "") | 
					
						
						|  |  | 
					
						
						|  | def chat(self, system, history, gen_conf): | 
					
						
						|  | from tencentcloud.hunyuan.v20230901 import models | 
					
						
						|  | from tencentcloud.common.exception.tencent_cloud_sdk_exception import ( | 
					
						
						|  | TencentCloudSDKException, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | _gen_conf = {} | 
					
						
						|  | _history = [{k.capitalize(): v for k, v in item.items()} for item in history] | 
					
						
						|  | if system: | 
					
						
						|  | _history.insert(0, {"Role": "system", "Content": system}) | 
					
						
						|  | if "temperature" in gen_conf: | 
					
						
						|  | _gen_conf["Temperature"] = gen_conf["temperature"] | 
					
						
						|  | if "top_p" in gen_conf: | 
					
						
						|  | _gen_conf["TopP"] = gen_conf["top_p"] | 
					
						
						|  |  | 
					
						
						|  | req = models.ChatCompletionsRequest() | 
					
						
						|  | params = {"Model": self.model_name, "Messages": _history, **_gen_conf} | 
					
						
						|  | req.from_json_string(json.dumps(params)) | 
					
						
						|  | ans = "" | 
					
						
						|  | try: | 
					
						
						|  | response = self.client.ChatCompletions(req) | 
					
						
						|  | ans = response.Choices[0].Message.Content | 
					
						
						|  | return ans, response.Usage.TotalTokens | 
					
						
						|  | except TencentCloudSDKException as e: | 
					
						
						|  | return ans + "\n**ERROR**: " + str(e), 0 | 
					
						
						|  |  | 
					
						
						|  | def chat_streamly(self, system, history, gen_conf): | 
					
						
						|  | from tencentcloud.hunyuan.v20230901 import models | 
					
						
						|  | from tencentcloud.common.exception.tencent_cloud_sdk_exception import ( | 
					
						
						|  | TencentCloudSDKException, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | _gen_conf = {} | 
					
						
						|  | _history = [{k.capitalize(): v for k, v in item.items()} for item in history] | 
					
						
						|  | if system: | 
					
						
						|  | _history.insert(0, {"Role": "system", "Content": system}) | 
					
						
						|  |  | 
					
						
						|  | if "temperature" in gen_conf: | 
					
						
						|  | _gen_conf["Temperature"] = gen_conf["temperature"] | 
					
						
						|  | if "top_p" in gen_conf: | 
					
						
						|  | _gen_conf["TopP"] = gen_conf["top_p"] | 
					
						
						|  | req = models.ChatCompletionsRequest() | 
					
						
						|  | params = { | 
					
						
						|  | "Model": self.model_name, | 
					
						
						|  | "Messages": _history, | 
					
						
						|  | "Stream": True, | 
					
						
						|  | **_gen_conf, | 
					
						
						|  | } | 
					
						
						|  | req.from_json_string(json.dumps(params)) | 
					
						
						|  | ans = "" | 
					
						
						|  | total_tokens = 0 | 
					
						
						|  | try: | 
					
						
						|  | response = self.client.ChatCompletions(req) | 
					
						
						|  | for resp in response: | 
					
						
						|  | resp = json.loads(resp["data"]) | 
					
						
						|  | if not resp["Choices"] or not resp["Choices"][0]["Delta"]["Content"]: | 
					
						
						|  | continue | 
					
						
						|  | ans += resp["Choices"][0]["Delta"]["Content"] | 
					
						
						|  | total_tokens += 1 | 
					
						
						|  |  | 
					
						
						|  | yield ans | 
					
						
						|  |  | 
					
						
						|  | except TencentCloudSDKException as e: | 
					
						
						|  | yield ans + "\n**ERROR**: " + str(e) | 
					
						
						|  |  | 
					
						
						|  | yield total_tokens | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SparkChat(Base): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, key, model_name, base_url="https://spark-api-open.xf-yun.com/v1" | 
					
						
						|  | ): | 
					
						
						|  | if not base_url: | 
					
						
						|  | base_url = "https://spark-api-open.xf-yun.com/v1" | 
					
						
						|  | model2version = { | 
					
						
						|  | "Spark-Max": "generalv3.5", | 
					
						
						|  | "Spark-Lite": "general", | 
					
						
						|  | "Spark-Pro": "generalv3", | 
					
						
						|  | "Spark-Pro-128K": "pro-128k", | 
					
						
						|  | "Spark-4.0-Ultra": "4.0Ultra", | 
					
						
						|  | } | 
					
						
						|  | model_version = model2version[model_name] | 
					
						
						|  | super().__init__(key, model_version, base_url) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BaiduYiyanChat(Base): | 
					
						
						|  | def __init__(self, key, model_name, base_url=None): | 
					
						
						|  | import qianfan | 
					
						
						|  |  | 
					
						
						|  | key = json.loads(key) | 
					
						
						|  | ak = key.get("yiyan_ak", "") | 
					
						
						|  | sk = key.get("yiyan_sk", "") | 
					
						
						|  | self.client = qianfan.ChatCompletion(ak=ak, sk=sk) | 
					
						
						|  | self.model_name = model_name.lower() | 
					
						
						|  | self.system = "" | 
					
						
						|  |  | 
					
						
						|  | def chat(self, system, history, gen_conf): | 
					
						
						|  | if system: | 
					
						
						|  | self.system = system | 
					
						
						|  | gen_conf["penalty_score"] = ( | 
					
						
						|  | (gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", | 
					
						
						|  | 0)) / 2 | 
					
						
						|  | ) + 1 | 
					
						
						|  | if "max_tokens" in gen_conf: | 
					
						
						|  | gen_conf["max_output_tokens"] = gen_conf["max_tokens"] | 
					
						
						|  | ans = "" | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | response = self.client.do( | 
					
						
						|  | model=self.model_name, | 
					
						
						|  | messages=history, | 
					
						
						|  | system=self.system, | 
					
						
						|  | **gen_conf | 
					
						
						|  | ).body | 
					
						
						|  | ans = response['result'] | 
					
						
						|  | return ans, response["usage"]["total_tokens"] | 
					
						
						|  |  | 
					
						
						|  | except Exception as e: | 
					
						
						|  | return ans + "\n**ERROR**: " + str(e), 0 | 
					
						
						|  |  | 
					
						
						|  | def chat_streamly(self, system, history, gen_conf): | 
					
						
						|  | if system: | 
					
						
						|  | self.system = system | 
					
						
						|  | gen_conf["penalty_score"] = ( | 
					
						
						|  | (gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", | 
					
						
						|  | 0)) / 2 | 
					
						
						|  | ) + 1 | 
					
						
						|  | if "max_tokens" in gen_conf: | 
					
						
						|  | gen_conf["max_output_tokens"] = gen_conf["max_tokens"] | 
					
						
						|  | ans = "" | 
					
						
						|  | total_tokens = 0 | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | response = self.client.do( | 
					
						
						|  | model=self.model_name, | 
					
						
						|  | messages=history, | 
					
						
						|  | system=self.system, | 
					
						
						|  | stream=True, | 
					
						
						|  | **gen_conf | 
					
						
						|  | ) | 
					
						
						|  | for resp in response: | 
					
						
						|  | resp = resp.body | 
					
						
						|  | ans += resp['result'] | 
					
						
						|  | total_tokens = resp["usage"]["total_tokens"] | 
					
						
						|  |  | 
					
						
						|  | yield ans | 
					
						
						|  |  | 
					
						
						|  | except Exception as e: | 
					
						
						|  | return ans + "\n**ERROR**: " + str(e), 0 | 
					
						
						|  |  | 
					
						
						|  | yield total_tokens | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AnthropicChat(Base): | 
					
						
						|  | def __init__(self, key, model_name, base_url=None): | 
					
						
						|  | import anthropic | 
					
						
						|  |  | 
					
						
						|  | self.client = anthropic.Anthropic(api_key=key) | 
					
						
						|  | self.model_name = model_name | 
					
						
						|  | self.system = "" | 
					
						
						|  |  | 
					
						
						|  | def chat(self, system, history, gen_conf): | 
					
						
						|  | if system: | 
					
						
						|  | self.system = system | 
					
						
						|  | if "max_tokens" not in gen_conf: | 
					
						
						|  | gen_conf["max_tokens"] = 4096 | 
					
						
						|  | if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"] | 
					
						
						|  | if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"] | 
					
						
						|  |  | 
					
						
						|  | ans = "" | 
					
						
						|  | try: | 
					
						
						|  | response = self.client.messages.create( | 
					
						
						|  | model=self.model_name, | 
					
						
						|  | messages=history, | 
					
						
						|  | system=self.system, | 
					
						
						|  | stream=False, | 
					
						
						|  | **gen_conf, | 
					
						
						|  | ).to_dict() | 
					
						
						|  | ans = response["content"][0]["text"] | 
					
						
						|  | if response["stop_reason"] == "max_tokens": | 
					
						
						|  | ans += ( | 
					
						
						|  | "...\nFor the content length reason, it stopped, continue?" | 
					
						
						|  | if is_english([ans]) | 
					
						
						|  | else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | 
					
						
						|  | ) | 
					
						
						|  | return ( | 
					
						
						|  | ans, | 
					
						
						|  | response["usage"]["input_tokens"] + response["usage"]["output_tokens"], | 
					
						
						|  | ) | 
					
						
						|  | except Exception as e: | 
					
						
						|  | return ans + "\n**ERROR**: " + str(e), 0 | 
					
						
						|  |  | 
					
						
						|  | def chat_streamly(self, system, history, gen_conf): | 
					
						
						|  | if system: | 
					
						
						|  | self.system = system | 
					
						
						|  | if "max_tokens" not in gen_conf: | 
					
						
						|  | gen_conf["max_tokens"] = 4096 | 
					
						
						|  | if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"] | 
					
						
						|  | if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"] | 
					
						
						|  |  | 
					
						
						|  | ans = "" | 
					
						
						|  | total_tokens = 0 | 
					
						
						|  | try: | 
					
						
						|  | response = self.client.messages.create( | 
					
						
						|  | model=self.model_name, | 
					
						
						|  | messages=history, | 
					
						
						|  | system=self.system, | 
					
						
						|  | stream=True, | 
					
						
						|  | **gen_conf, | 
					
						
						|  | ) | 
					
						
						|  | for res in response.iter_lines(): | 
					
						
						|  | if res.type == 'content_block_delta': | 
					
						
						|  | text = res.delta.text | 
					
						
						|  | ans += text | 
					
						
						|  | total_tokens += num_tokens_from_string(text) | 
					
						
						|  | yield ans | 
					
						
						|  | except Exception as e: | 
					
						
						|  | yield ans + "\n**ERROR**: " + str(e) | 
					
						
						|  |  | 
					
						
						|  | yield total_tokens | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GoogleChat(Base): | 
					
						
						|  | def __init__(self, key, model_name, base_url=None): | 
					
						
						|  | from google.oauth2 import service_account | 
					
						
						|  | import base64 | 
					
						
						|  |  | 
					
						
						|  | key = json.load(key) | 
					
						
						|  | access_token = json.loads( | 
					
						
						|  | base64.b64decode(key.get("google_service_account_key", "")) | 
					
						
						|  | ) | 
					
						
						|  | project_id = key.get("google_project_id", "") | 
					
						
						|  | region = key.get("google_region", "") | 
					
						
						|  |  | 
					
						
						|  | scopes = ["https://www.googleapis.com/auth/cloud-platform"] | 
					
						
						|  | self.model_name = model_name | 
					
						
						|  | self.system = "" | 
					
						
						|  |  | 
					
						
						|  | if "claude" in self.model_name: | 
					
						
						|  | from anthropic import AnthropicVertex | 
					
						
						|  | from google.auth.transport.requests import Request | 
					
						
						|  |  | 
					
						
						|  | if access_token: | 
					
						
						|  | credits = service_account.Credentials.from_service_account_info( | 
					
						
						|  | access_token, scopes=scopes | 
					
						
						|  | ) | 
					
						
						|  | request = Request() | 
					
						
						|  | credits.refresh(request) | 
					
						
						|  | token = credits.token | 
					
						
						|  | self.client = AnthropicVertex( | 
					
						
						|  | region=region, project_id=project_id, access_token=token | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | self.client = AnthropicVertex(region=region, project_id=project_id) | 
					
						
						|  | else: | 
					
						
						|  | from google.cloud import aiplatform | 
					
						
						|  | import vertexai.generative_models as glm | 
					
						
						|  |  | 
					
						
						|  | if access_token: | 
					
						
						|  | credits = service_account.Credentials.from_service_account_info( | 
					
						
						|  | access_token | 
					
						
						|  | ) | 
					
						
						|  | aiplatform.init( | 
					
						
						|  | credentials=credits, project=project_id, location=region | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | aiplatform.init(project=project_id, location=region) | 
					
						
						|  | self.client = glm.GenerativeModel(model_name=self.model_name) | 
					
						
						|  |  | 
					
						
						|  | def chat(self, system, history, gen_conf): | 
					
						
						|  | if system: | 
					
						
						|  | self.system = system | 
					
						
						|  |  | 
					
						
						|  | if "claude" in self.model_name: | 
					
						
						|  | if "max_tokens" not in gen_conf: | 
					
						
						|  | gen_conf["max_tokens"] = 4096 | 
					
						
						|  | try: | 
					
						
						|  | response = self.client.messages.create( | 
					
						
						|  | model=self.model_name, | 
					
						
						|  | messages=history, | 
					
						
						|  | system=self.system, | 
					
						
						|  | stream=False, | 
					
						
						|  | **gen_conf, | 
					
						
						|  | ).json() | 
					
						
						|  | ans = response["content"][0]["text"] | 
					
						
						|  | if response["stop_reason"] == "max_tokens": | 
					
						
						|  | ans += ( | 
					
						
						|  | "...\nFor the content length reason, it stopped, continue?" | 
					
						
						|  | if is_english([ans]) | 
					
						
						|  | else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵" | 
					
						
						|  | ) | 
					
						
						|  | return ( | 
					
						
						|  | ans, | 
					
						
						|  | response["usage"]["input_tokens"] | 
					
						
						|  | + response["usage"]["output_tokens"], | 
					
						
						|  | ) | 
					
						
						|  | except Exception as e: | 
					
						
						|  | return "\n**ERROR**: " + str(e), 0 | 
					
						
						|  | else: | 
					
						
						|  | self.client._system_instruction = self.system | 
					
						
						|  | if "max_tokens" in gen_conf: | 
					
						
						|  | gen_conf["max_output_tokens"] = gen_conf["max_tokens"] | 
					
						
						|  | for k in list(gen_conf.keys()): | 
					
						
						|  | if k not in ["temperature", "top_p", "max_output_tokens"]: | 
					
						
						|  | del gen_conf[k] | 
					
						
						|  | for item in history: | 
					
						
						|  | if "role" in item and item["role"] == "assistant": | 
					
						
						|  | item["role"] = "model" | 
					
						
						|  | if "content" in item: | 
					
						
						|  | item["parts"] = item.pop("content") | 
					
						
						|  | try: | 
					
						
						|  | response = self.client.generate_content( | 
					
						
						|  | history, generation_config=gen_conf | 
					
						
						|  | ) | 
					
						
						|  | ans = response.text | 
					
						
						|  | return ans, response.usage_metadata.total_token_count | 
					
						
						|  | except Exception as e: | 
					
						
						|  | return "**ERROR**: " + str(e), 0 | 
					
						
						|  |  | 
					
						
						|  | def chat_streamly(self, system, history, gen_conf): | 
					
						
						|  | if system: | 
					
						
						|  | self.system = system | 
					
						
						|  |  | 
					
						
						|  | if "claude" in self.model_name: | 
					
						
						|  | if "max_tokens" not in gen_conf: | 
					
						
						|  | gen_conf["max_tokens"] = 4096 | 
					
						
						|  | ans = "" | 
					
						
						|  | total_tokens = 0 | 
					
						
						|  | try: | 
					
						
						|  | response = self.client.messages.create( | 
					
						
						|  | model=self.model_name, | 
					
						
						|  | messages=history, | 
					
						
						|  | system=self.system, | 
					
						
						|  | stream=True, | 
					
						
						|  | **gen_conf, | 
					
						
						|  | ) | 
					
						
						|  | for res in response.iter_lines(): | 
					
						
						|  | res = res.decode("utf-8") | 
					
						
						|  | if "content_block_delta" in res and "data" in res: | 
					
						
						|  | text = json.loads(res[6:])["delta"]["text"] | 
					
						
						|  | ans += text | 
					
						
						|  | total_tokens += num_tokens_from_string(text) | 
					
						
						|  | except Exception as e: | 
					
						
						|  | yield ans + "\n**ERROR**: " + str(e) | 
					
						
						|  |  | 
					
						
						|  | yield total_tokens | 
					
						
						|  | else: | 
					
						
						|  | self.client._system_instruction = self.system | 
					
						
						|  | if "max_tokens" in gen_conf: | 
					
						
						|  | gen_conf["max_output_tokens"] = gen_conf["max_tokens"] | 
					
						
						|  | for k in list(gen_conf.keys()): | 
					
						
						|  | if k not in ["temperature", "top_p", "max_output_tokens"]: | 
					
						
						|  | del gen_conf[k] | 
					
						
						|  | for item in history: | 
					
						
						|  | if "role" in item and item["role"] == "assistant": | 
					
						
						|  | item["role"] = "model" | 
					
						
						|  | if "content" in item: | 
					
						
						|  | item["parts"] = item.pop("content") | 
					
						
						|  | ans = "" | 
					
						
						|  | try: | 
					
						
						|  | response = self.model.generate_content( | 
					
						
						|  | history, generation_config=gen_conf, stream=True | 
					
						
						|  | ) | 
					
						
						|  | for resp in response: | 
					
						
						|  | ans += resp.text | 
					
						
						|  | yield ans | 
					
						
						|  |  | 
					
						
						|  | except Exception as e: | 
					
						
						|  | yield ans + "\n**ERROR**: " + str(e) | 
					
						
						|  |  | 
					
						
						|  | yield response._chunks[-1].usage_metadata.total_token_count | 
					
						
						|  |  |