ytseg_demo / app.py
retkowski's picture
Add demo
cb71ef5
raw
history blame
9.85 kB
import itertools
import json
import re
from functools import partial
from pathlib import Path
import pandas as pd
import requests
import streamlit as st
from generate_text_api import SummarizerGenerator
from model_inferences.utils.files import get_captions_from_vtt, get_transcript
USE_PARAGRAPHING_MODEL = True
def get_sublist_by_flattened_index(A, i):
current_index = 0
for sublist in A:
sublist_length = len(sublist)
if current_index <= i < current_index + sublist_length:
return sublist, A.index(sublist)
current_index += sublist_length
return None, None
import requests
def get_talk_metadata(video_id):
url = "https://www.ted.com/graphql"
headers = {
"Content-Type": "application/json",
"Accept": "application/json",
"x-operation-name": "Transcript", # Replace with the actual operation name
}
data = {
"query": """
query GetTalk($videoId: ID!) {
video(id: $videoId) {
title,
presenterDisplayName,
nativeDownloads {medium}
}
}
""",
"variables": {
"videoId": video_id, # Corrected key to "videoId"
},
}
response = requests.post(url, json=data, headers=headers)
if response.status_code == 200:
result = response.json()
return result
else:
print(f"Error: {response.status_code}, {response.text}")
class OfflineTextSegmenterClient:
def __init__(self, host_url):
self.host_url = host_url.rstrip("/") + "/segment"
def segment(self, text, captions=None, generate_titles=False, threshold=0.4):
payload = {
'text': text,
'captions': captions,
'generate_titles': generate_titles,
"prefix_titles": True,
"threshold": threshold,
}
headers = {
'Content-Type': 'application/json'
}
response = requests.post(self.host_url, data=json.dumps(payload), headers=headers).json()
#segments = response["annotated_segments"] if "annotated_segments" in response else response["segments"]
return {'segments':response["segments"], 'titles': response["titles"], 'sentences': response["sentences"]}
class Toc:
def __init__(self):
self._items = []
self._placeholder = None
def title(self, text):
self._markdown(text, "h1")
def header(self, text):
self._markdown(text, "h2", " " * 2)
def subheader(self, text):
self._markdown(text, "h3", " " * 4)
def placeholder(self, sidebar=False):
self._placeholder = st.sidebar.empty() if sidebar else st.empty()
def generate(self):
if self._placeholder:
self._placeholder.markdown("\n".join(self._items), unsafe_allow_html=True)
def _markdown(self, text, level, space=""):
key = re.sub(r'[^\w-]', '', text.replace(" ", "-").replace("'", "-").lower())
st.markdown(f"<{level} id='{key}'>{text}</{level}>", unsafe_allow_html=True)
self._items.append(f"{space}* <a href='#{key}'>{text}</a>")
endpoint = "http://hiaisc.isl.iar.kit.edu/summarize/summarize_stream"
client = OfflineTextSegmenterClient("http://hiaisc.isl.iar.kit.edu/chapterize")
if USE_PARAGRAPHING_MODEL:
paragrapher = OfflineTextSegmenterClient("http://hiaisc.isl.iar.kit.edu/paragraph")
summarizer = SummarizerGenerator(endpoint)
import re
def replace_newlines(text):
updated_text = re.sub(r'\n+', r'\n\n', text)
return updated_text
def generate_summary(summarizer, generated_text_box, input_, prefix=""):
all_generated_text = prefix
for generated_text in summarizer.generate_summary_stream(input_):
all_generated_text += replace_newlines(generated_text)
generated_text_box.info(all_generated_text)
print(all_generated_text)
return all_generated_text.strip()
st.header("Demo: Intelligent Recap")
if not hasattr(st, 'global_state'):
st.global_state = {'NIPS 2021 Talks': None, 'TED Talks': None}
# NIPS 2021 Talks
transcript_files = itertools.islice(Path("demo_data/nips-2021/").rglob("transcript_whisper_large-v2.vtt"), 15)
# get titles from metadata.json
transcripts_map = {}
for transcript_file in transcript_files:
base_path = transcript_file.parent
metadata = base_path / "metadata.json"
txt_file = base_path / "transcript_whisper_large-v2.txt"
with open(metadata) as f:
metadata = json.load(f)
title = metadata["title"]
transcript = get_transcript(txt_file)
captions = get_captions_from_vtt(transcript_file)
transcripts_map[title] = {"transcript": transcript, "captions": captions, "video": base_path / "video.mp4"}
st.global_state['NIPS 2021 Talks'] = transcripts_map
data = pd.read_json("demo_data/ted_talks.json")
video_ids = data.talk_id.tolist()
transcripts = data.text.apply(lambda x: " ".join(x)).tolist()
transcripts_map = {}
for video_id, transcript in zip(video_ids, transcripts):
metadata = get_talk_metadata(video_id)
title = metadata["data"]["video"]["title"]
presenter = metadata["data"]["video"]["presenterDisplayName"]
print(metadata["data"])
if metadata["data"]["video"]["nativeDownloads"] is None:
continue
video_url = metadata["data"]["video"]["nativeDownloads"]["medium"]
transcripts_map[title] = {"transcript": transcript, "video": video_url, "presenter": presenter}
st.global_state['TED Talks'] = transcripts_map
def get_lecture_id(path):
return int(path.parts[-2].split('-')[1])
transcript_files = Path("demo_data/lectures/").rglob("English.vtt")
sorted_path_list = sorted(transcript_files, key=get_lecture_id)
transcripts_map = {}
for transcript_file in sorted_path_list:
base_path = transcript_file.parent
lecture_id = base_path.parts[-1]
transcript = " ".join([c["text"].strip() for c in get_captions_from_vtt(transcript_file)]).replace("\n", " ")
video_path = Path(base_path, "video.mp4")
transcripts_map["Machine Translation: " + lecture_id] = {"transcript": transcript, "video": video_path}
st.global_state['KIT Lectures'] = transcripts_map
type_of_document = st.selectbox('What kind of document do you want to test it on?', list(st.global_state.keys()))
transcripts_map = st.global_state[type_of_document]
selected_talk = st.selectbox("Choose a document...", list(transcripts_map.keys()))
st.video(str(transcripts_map[selected_talk]['video']), format="video/mp4", start_time=0)
input_text = st.text_area("Transcript", value=transcripts_map[selected_talk]['transcript'], height=300)
toc = Toc()
summarization_todos = []
with st.expander("Adjust Thresholds"):
threshold = st.slider('Chapter Segmentation Threshold', 0.00, 1.00, value=0.4, step=0.05)
paragraphing_threshold = st.slider('Paragraphing Threshold', 0.00, 1.00, value=0.5, step=0.05)
if st.button("Process Transcript"):
with st.sidebar:
st.header("Table of Contents")
toc.placeholder()
st.header(selected_talk, divider='rainbow')
# if 'presenter' in transcripts_map[selected_talk]:
# st.markdown(f"### *by **{transcripts_map[selected_talk]['presenter']}***")
captions = transcripts_map[selected_talk]['captions'] if 'captions' in transcripts_map[selected_talk] else None
result = client.segment(input_text, captions, generate_titles=True, threshold=threshold)
if USE_PARAGRAPHING_MODEL:
presult = paragrapher.segment(input_text, captions, generate_titles=False, threshold=paragraphing_threshold)
paragraphs = presult['segments']
segments, titles, sentences = result['segments'], result['titles'], result['sentences']
if USE_PARAGRAPHING_MODEL:
prev_chapter_idx = 0
prev_paragraph_idx = 0
segment = []
for i, sentence in enumerate(sentences):
chapter, chapter_idx = get_sublist_by_flattened_index(segments, i)
paragraph, paragraph_idx = get_sublist_by_flattened_index(paragraphs, i)
if (chapter_idx != prev_chapter_idx and paragraph_idx == prev_paragraph_idx) or (paragraph_idx != prev_paragraph_idx and chapter_idx != prev_chapter_idx):
print("Chapter / Chapter & Paragraph")
segment_text = " ".join(segment)
toc.subheader(titles[prev_chapter_idx])
if len(segment_text) > 450:
generated_text_box = st.info("")
summarization_todos.append(partial(generate_summary, summarizer, generated_text_box, segment_text))
st.write(segment_text)
segment = []
elif paragraph_idx != prev_paragraph_idx and chapter_idx == prev_chapter_idx:
print("Paragraph")
segment.append("\n\n")
segment.append(sentence)
prev_chapter_idx = chapter_idx
prev_paragraph_idx = paragraph_idx
segment_text = " ".join(segment)
toc.subheader(titles[prev_chapter_idx])
generated_text_box = st.info("")
summarization_todos.append(partial(generate_summary, summarizer, generated_text_box, segment_text))
st.write(segment_text)
else:
segments = [" ".join([sentence for sentence in segment]) for segment in segments]
for title, segment in zip(titles, segments):
toc.subheader(title)
generated_text_box = st.info("")
summarization_todos.append(partial(generate_summary, summarizer, generated_text_box, segment))
st.write(segment)
toc.generate()
for summarization_todo in summarization_todos:
summarization_todo()