Spaces:
Running
Running
#!/usr/bin/env python | |
# coding: utf-8 | |
# Copyright 2021, IBM Corporation. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Python lib to recommend prompts. | |
""" | |
__author__ = "Vagner Santana, Melina Alberio, Cassia Sanctos and Tiago Machado" | |
__copyright__ = "IBM Corporation 2024" | |
__credits__ = ["Vagner Santana, Melina Alberio, Cassia Sanctos, Tiago Machado"] | |
__license__ = "Apache 2.0" | |
__version__ = "0.0.1" | |
import requests | |
import json | |
import math | |
import re | |
import pandas as pd | |
import numpy as np | |
from sklearn.metrics.pairwise import cosine_similarity | |
import os | |
from sentence_transformers import SentenceTransformer | |
def populate_json(json_file_path = './prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json', | |
existing_json_populated_file_path = './prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json'): | |
""" | |
Function that receives a default json file with | |
empty embeddings and checks whether there is a | |
partially populated json file. | |
Args: | |
json_file_path: Path to json default file with | |
empty embeddings. | |
existing_json_populated_file_path: Path to partially | |
populated json file. | |
Returns: | |
A json. | |
Raises: | |
Exception when json file can't be loaded. | |
""" | |
json_file = json_file_path | |
if(os.path.isfile(existing_json_populated_file_path)): | |
json_file = existing_json_populated_file_path | |
prompt_json = json.load(open(json_file)) | |
return prompt_json | |
def get_embedding_func(inference = 'huggingface', **kwargs): | |
if inference == 'local': | |
if 'model_id' not in kwargs: | |
raise TypeError("Missing required argument: model_id") | |
model = SentenceTransformer(kwargs['model_id']) | |
def embedding_fn(texts): | |
return model.encode(texts).tolist() | |
elif inference == 'huggingface': | |
if 'api_url' not in kwargs: | |
raise TypeError("Missing required argument: api_url") | |
if 'headers' not in kwargs: | |
raise TypeError("Missing required argument: headers") | |
def embedding_fn(texts): | |
response = requests.post(kwargs['api_url'], headers=kwargs['headers'], json={"inputs": texts, "options":{"wait_for_model":True}}) | |
return response.json() | |
else: | |
raise ValueError(f"Inference type {inference} is not supported. Please choose one of ['local', 'huggingface'].") | |
return embedding_fn | |
def split_into_sentences(prompt): | |
""" | |
Function that splits the input text into sentences based | |
on punctuation (.!?). The regular expression pattern | |
'(?<=[.!?]) +' ensures that we split after a sentence-ending | |
punctuation followed by one or more spaces. | |
Args: | |
prompt: The entered prompt text. | |
Returns: | |
A list of extracted sentences. | |
Raises: | |
Nothing. | |
""" | |
sentences = re.split(r'(?<=[.!?]) +', prompt) | |
return sentences | |
def get_distance(embedding1, embedding2): | |
""" | |
Function that returns euclidean distance between | |
two embeddings. | |
Args: | |
embedding1: first embedding. | |
embedding2: second embedding. | |
Returns: | |
The euclidean distance value. | |
Raises: | |
Nothing. | |
""" | |
total = 0 | |
if(len(embedding1) != len(embedding2)): | |
return math.inf | |
for i, obj in enumerate(embedding1): | |
total += math.pow(embedding2[0][i] - embedding1[0][i], 2) | |
return(math.sqrt(total)) | |
def sort_by_similarity(e): | |
""" | |
Function that sorts by similarity. | |
Args: | |
e: | |
Returns: | |
The sorted similarity value. | |
Raises: | |
Nothing. | |
""" | |
return e['similarity'] | |
def recommend_prompt( | |
prompt, | |
prompt_json, | |
embedding_fn = None, | |
add_lower_threshold = 0.3, | |
add_upper_threshold = 0.5, | |
remove_lower_threshold = 0.1, | |
remove_upper_threshold = 0.5, | |
umap_model = None | |
): | |
""" | |
Function that recommends prompts additions or removals. | |
Args: | |
prompt: The entered prompt text. | |
prompt_json: Json file populated with embeddings. | |
embedding_fn: Embedding function to convert prompt sentences into embeddings. | |
If None, uses all-MiniLM-L6-v2 run locally. | |
add_lower_threshold: Lower threshold for sentence addition, | |
the default value is 0.3. | |
add_upper_threshold: Upper threshold for sentence addition, | |
the default value is 0.5. | |
remove_lower_threshold: Lower threshold for sentence removal, | |
the default value is 0.3. | |
remove_upper_threshold: Upper threshold for sentence removal, | |
the default value is 0.5. | |
umap_model: Umap model used for visualization. | |
If None, the projected embeddings of input sentences will not be returned. | |
Returns: | |
Prompt values to add or remove. | |
Raises: | |
Nothing. | |
""" | |
if embedding_fn is None: | |
# Use all-MiniLM-L6-v2 locally by default | |
embedding_fn = get_embedding_func('local', model_id='sentence-transformers/all-MiniLM-L6-v2') | |
# Output initialization | |
out, out['input'], out['add'], out['remove'] = {}, {}, {}, {} | |
input_items, items_to_add, items_to_remove = [], [], [] | |
# Spliting prompt into sentences | |
input_sentences = split_into_sentences(prompt) | |
# TODO: Request embeddings for input an d store in a input_embeddingS | |
# Recommendation of values to add to the current prompt | |
# Using only the last sentence for the add recommendation | |
input_embedding = embedding_fn(input_sentences[-1]) | |
input_embedding = np.array(input_embedding) | |
sentence_embeddings = np.array( | |
[v['centroid'] for v in prompt_json['positive_values']] | |
) | |
similarities_positive_sent = cosine_similarity(np.expand_dims(input_embedding, axis=0), sentence_embeddings)[0, :] | |
for value_idx, v in enumerate(prompt_json['positive_values']): | |
# Dealing with values without prompts and makinig sure they have the same dimensions | |
if(len(v['centroid']) != len(input_embedding)): | |
continue | |
if(similarities_positive_sent[value_idx] < add_lower_threshold): | |
continue | |
value_sents_similarity = cosine_similarity( | |
np.expand_dims(input_embedding, axis=0), | |
np.array([p['embedding'] for p in v['prompts']]) | |
)[0, :] | |
closer_prompt_idxs = np.nonzero((add_lower_threshold < value_sents_similarity) & (value_sents_similarity < add_upper_threshold))[0] | |
for idx in closer_prompt_idxs: | |
items_to_add.append({ | |
'value': v['label'], | |
'prompt': v['prompts'][idx]['text'], | |
'similarity': value_sents_similarity[idx], | |
'x': v['prompts'][idx]['x'], | |
'y': v['prompts'][idx]['y'] | |
}) | |
out['add'] = items_to_add | |
inp_sentence_embeddings = np.array([embedding_fn(sent) for sent in input_sentences]) | |
pairwise_similarities = cosine_similarity( | |
inp_sentence_embeddings, | |
np.array([v['centroid'] for v in prompt_json['negative_values']]) | |
) | |
# Recommendation of values to remove from the current prompt | |
for sent_idx, sentence in enumerate(input_sentences): | |
input_embedding = inp_sentence_embeddings[sent_idx] | |
if umap_model: | |
# Obtaining XY coords for input sentences from a parametric UMAP model | |
if(len(prompt_json['negative_values'][0]['centroid']) == len(input_embedding) and sentence != ''): | |
embeddings_umap = umap_model.transform(np.expand_dims(pd.DataFrame(input_embedding).squeeze(), axis=0)) | |
input_items.append({ | |
'sentence': sentence, | |
'x': str(embeddings_umap[0][0]), | |
'y': str(embeddings_umap[0][1]) | |
}) | |
for value_idx, v in enumerate(prompt_json['negative_values']): | |
# Dealing with values without prompts and making sure they have the same dimensions | |
if(len(v['centroid']) != len(input_embedding)): | |
continue | |
if(pairwise_similarities[sent_idx][value_idx] < remove_lower_threshold): | |
continue | |
# A more restrict threshold is used here to prevent false positives | |
# The sentence_threshold is being used to indicate that there must be a sentence in the prompt that is similiar to one of our adversarial prompts | |
# So, yes, we want to recommend the removal of something adversarial we've found | |
value_sents_similarity = cosine_similarity( | |
np.expand_dims(input_embedding, axis=0), | |
np.array([p['embedding'] for p in v['prompts']]) | |
)[0, :] | |
closer_prompt_idxs = np.nonzero(value_sents_similarity > remove_upper_threshold)[0] | |
for idx in closer_prompt_idxs: | |
items_to_remove.append({ | |
'value': v['label'], | |
'sentence': sentence, | |
'sentence_index': sent_idx, | |
'closest_harmful_sentence': v['prompts'][idx]['text'], | |
'similarity': value_sents_similarity[idx], | |
'x': v['prompts'][idx]['x'], | |
'y': v['prompts'][idx]['y'] | |
}) | |
out['remove'] = items_to_remove | |
out['input'] = input_items | |
out['add'] = sorted(out['add'], key=sort_by_similarity, reverse=True) | |
values_map = {} | |
for item in out['add'][:]: | |
if(item['value'] in values_map): | |
out['add'].remove(item) | |
else: | |
values_map[item['value']] = item['similarity'] | |
out['add'] = out['add'][0:5] | |
out['remove'] = sorted(out['remove'], key=sort_by_similarity, reverse=True) | |
values_map = {} | |
for item in out['remove'][:]: | |
if(item['value'] in values_map): | |
out['remove'].remove(item) | |
else: | |
values_map[item['value']] = item['similarity'] | |
out['remove'] = out['remove'][0:5] | |
return out | |
def get_thresholds( | |
prompts, | |
prompt_json, | |
embedding_fn = None, | |
): | |
""" | |
Function that recommends thresholds given an array of prompts. | |
Args: | |
prompts: The array with samples of prompts to be used in the system. | |
prompt_json: Sentences to be forwarded to the recommendation endpoint. | |
embedding_fn: Embedding function to convert prompt sentences into embeddings. | |
If None, uses all-MiniLM-L6-v2 run locally. | |
Returns: | |
A map with thresholds for the sample prompts and the informed model. | |
Raises: | |
Nothing. | |
""" | |
if embedding_fn is None: | |
embedding_fn = get_embedding_func('local', model_id='sentence-transformers/all-MiniLM-L6-v2') | |
add_similarities = [] | |
remove_similarities = [] | |
for p_id, p in enumerate(prompts): | |
out = recommend_prompt(p, prompt_json, embedding_fn, 0, 1, 0, 0, None) # Wider possible range | |
for r in out['add']: | |
add_similarities.append(r['similarity']) | |
for r in out['remove']: | |
remove_similarities.append(r['similarity']) | |
add_similarities_df = pd.DataFrame({'similarity': add_similarities}) | |
remove_similarities_df = pd.DataFrame({'similarity': remove_similarities}) | |
thresholds = {} | |
thresholds['add_lower_threshold'] = round(add_similarities_df.describe([.1]).loc['10%', 'similarity'], 1) | |
thresholds['add_higher_threshold'] = round(add_similarities_df.describe([.9]).loc['90%', 'similarity'], 1) | |
thresholds['remove_lower_threshold'] = round(remove_similarities_df.describe([.1]).loc['10%', 'similarity'], 1) | |
thresholds['remove_higher_threshold'] = round(remove_similarities_df.describe([.9]).loc['90%', 'similarity'], 1) | |
return thresholds |