|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Python lib to recommend prompts. |
|
""" |
|
|
|
__author__ = "Vagner Santana, Melina Alberio, Cassia Sanctos and Tiago Machado" |
|
__copyright__ = "IBM Corporation 2024" |
|
__credits__ = ["Vagner Santana, Melina Alberio, Cassia Sanctos, Tiago Machado"] |
|
__license__ = "Apache 2.0" |
|
__version__ = "0.0.1" |
|
|
|
import requests |
|
import json |
|
import math |
|
import re |
|
import pandas as pd |
|
import numpy as np |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
import os |
|
from sentence_transformers import SentenceTransformer |
|
|
|
def populate_json(json_file_path = './prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json', |
|
existing_json_populated_file_path = './prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json'): |
|
""" |
|
Function that receives a default json file with |
|
empty embeddings and checks whether there is a |
|
partially populated json file. |
|
|
|
Args: |
|
json_file_path: Path to json default file with |
|
empty embeddings. |
|
existing_json_populated_file_path: Path to partially |
|
populated json file. |
|
|
|
Returns: |
|
A json. |
|
|
|
Raises: |
|
Exception when json file can't be loaded. |
|
""" |
|
json_file = json_file_path |
|
if(os.path.isfile(existing_json_populated_file_path)): |
|
json_file = existing_json_populated_file_path |
|
prompt_json = json.load(open(json_file)) |
|
return prompt_json |
|
|
|
def get_embedding_func(inference = 'huggingface', **kwargs): |
|
if inference == 'local': |
|
if 'model_id' not in kwargs: |
|
raise TypeError("Missing required argument: model_id") |
|
model = SentenceTransformer(kwargs['model_id']) |
|
|
|
def embedding_fn(texts): |
|
return model.encode(texts).tolist() |
|
|
|
elif inference == 'huggingface': |
|
if 'api_url' not in kwargs: |
|
raise TypeError("Missing required argument: api_url") |
|
if 'headers' not in kwargs: |
|
raise TypeError("Missing required argument: headers") |
|
|
|
def embedding_fn(texts): |
|
response = requests.post(kwargs['api_url'], headers=kwargs['headers'], json={"inputs": texts, "options":{"wait_for_model":True}}) |
|
return response.json() |
|
else: |
|
raise ValueError(f"Inference type {inference} is not supported. Please choose one of ['local', 'huggingface'].") |
|
|
|
return embedding_fn |
|
|
|
def split_into_sentences(prompt): |
|
""" |
|
Function that splits the input text into sentences based |
|
on punctuation (.!?). The regular expression pattern |
|
'(?<=[.!?]) +' ensures that we split after a sentence-ending |
|
punctuation followed by one or more spaces. |
|
|
|
Args: |
|
prompt: The entered prompt text. |
|
|
|
Returns: |
|
A list of extracted sentences. |
|
|
|
Raises: |
|
Nothing. |
|
""" |
|
sentences = re.split(r'(?<=[.!?]) +', prompt) |
|
return sentences |
|
|
|
def get_distance(embedding1, embedding2): |
|
""" |
|
Function that returns euclidean distance between |
|
two embeddings. |
|
|
|
Args: |
|
embedding1: first embedding. |
|
embedding2: second embedding. |
|
|
|
Returns: |
|
The euclidean distance value. |
|
|
|
Raises: |
|
Nothing. |
|
""" |
|
total = 0 |
|
if(len(embedding1) != len(embedding2)): |
|
return math.inf |
|
for i, obj in enumerate(embedding1): |
|
total += math.pow(embedding2[0][i] - embedding1[0][i], 2) |
|
return(math.sqrt(total)) |
|
|
|
def sort_by_similarity(e): |
|
""" |
|
Function that sorts by similarity. |
|
|
|
Args: |
|
e: |
|
|
|
Returns: |
|
The sorted similarity value. |
|
|
|
Raises: |
|
Nothing. |
|
""" |
|
return e['similarity'] |
|
|
|
def recommend_prompt( |
|
prompt, |
|
prompt_json, |
|
embedding_fn = None, |
|
add_lower_threshold = 0.3, |
|
add_upper_threshold = 0.5, |
|
remove_lower_threshold = 0.1, |
|
remove_upper_threshold = 0.5, |
|
umap_model = None |
|
): |
|
""" |
|
Function that recommends prompts additions or removals. |
|
|
|
Args: |
|
prompt: The entered prompt text. |
|
prompt_json: Json file populated with embeddings. |
|
embedding_fn: Embedding function to convert prompt sentences into embeddings. |
|
If None, uses all-MiniLM-L6-v2 run locally. |
|
add_lower_threshold: Lower threshold for sentence addition, |
|
the default value is 0.3. |
|
add_upper_threshold: Upper threshold for sentence addition, |
|
the default value is 0.5. |
|
remove_lower_threshold: Lower threshold for sentence removal, |
|
the default value is 0.3. |
|
remove_upper_threshold: Upper threshold for sentence removal, |
|
the default value is 0.5. |
|
umap_model: Umap model used for visualization. |
|
If None, the projected embeddings of input sentences will not be returned. |
|
|
|
Returns: |
|
Prompt values to add or remove. |
|
|
|
Raises: |
|
Nothing. |
|
""" |
|
if embedding_fn is None: |
|
|
|
embedding_fn = get_embedding_func('local', model_id='sentence-transformers/all-MiniLM-L6-v2') |
|
|
|
|
|
out, out['input'], out['add'], out['remove'] = {}, {}, {}, {} |
|
input_items, items_to_add, items_to_remove = [], [], [] |
|
|
|
|
|
input_sentences = split_into_sentences(prompt) |
|
|
|
|
|
|
|
|
|
|
|
input_embedding = embedding_fn(input_sentences[-1]) |
|
input_embedding = np.array(input_embedding) |
|
|
|
sentence_embeddings = np.array( |
|
[v['centroid'] for v in prompt_json['positive_values']] |
|
) |
|
|
|
similarities_positive_sent = cosine_similarity(np.expand_dims(input_embedding, axis=0), sentence_embeddings)[0, :] |
|
|
|
for value_idx, v in enumerate(prompt_json['positive_values']): |
|
|
|
if(len(v['centroid']) != len(input_embedding)): |
|
continue |
|
|
|
if(similarities_positive_sent[value_idx] < add_lower_threshold): |
|
continue |
|
|
|
value_sents_similarity = cosine_similarity( |
|
np.expand_dims(input_embedding, axis=0), |
|
np.array([p['embedding'] for p in v['prompts']]) |
|
)[0, :] |
|
closer_prompt_idxs = np.nonzero((add_lower_threshold < value_sents_similarity) & (value_sents_similarity < add_upper_threshold))[0] |
|
|
|
for idx in closer_prompt_idxs: |
|
items_to_add.append({ |
|
'value': v['label'], |
|
'prompt': v['prompts'][idx]['text'], |
|
'similarity': value_sents_similarity[idx], |
|
'x': v['prompts'][idx]['x'], |
|
'y': v['prompts'][idx]['y'] |
|
}) |
|
out['add'] = items_to_add |
|
|
|
inp_sentence_embeddings = np.array([embedding_fn(sent) for sent in input_sentences]) |
|
pairwise_similarities = cosine_similarity( |
|
inp_sentence_embeddings, |
|
np.array([v['centroid'] for v in prompt_json['negative_values']]) |
|
) |
|
|
|
|
|
for sent_idx, sentence in enumerate(input_sentences): |
|
input_embedding = inp_sentence_embeddings[sent_idx] |
|
if umap_model: |
|
|
|
if(len(prompt_json['negative_values'][0]['centroid']) == len(input_embedding) and sentence != ''): |
|
embeddings_umap = umap_model.transform(np.expand_dims(pd.DataFrame(input_embedding).squeeze(), axis=0)) |
|
input_items.append({ |
|
'sentence': sentence, |
|
'x': str(embeddings_umap[0][0]), |
|
'y': str(embeddings_umap[0][1]) |
|
}) |
|
|
|
for value_idx, v in enumerate(prompt_json['negative_values']): |
|
|
|
if(len(v['centroid']) != len(input_embedding)): |
|
continue |
|
if(pairwise_similarities[sent_idx][value_idx] < remove_lower_threshold): |
|
continue |
|
|
|
|
|
|
|
|
|
value_sents_similarity = cosine_similarity( |
|
np.expand_dims(input_embedding, axis=0), |
|
np.array([p['embedding'] for p in v['prompts']]) |
|
)[0, :] |
|
closer_prompt_idxs = np.nonzero(value_sents_similarity > remove_upper_threshold)[0] |
|
|
|
for idx in closer_prompt_idxs: |
|
items_to_remove.append({ |
|
'value': v['label'], |
|
'sentence': sentence, |
|
'sentence_index': sent_idx, |
|
'closest_harmful_sentence': v['prompts'][idx]['text'], |
|
'similarity': value_sents_similarity[idx], |
|
'x': v['prompts'][idx]['x'], |
|
'y': v['prompts'][idx]['y'] |
|
}) |
|
out['remove'] = items_to_remove |
|
|
|
out['input'] = input_items |
|
|
|
out['add'] = sorted(out['add'], key=sort_by_similarity, reverse=True) |
|
values_map = {} |
|
for item in out['add'][:]: |
|
if(item['value'] in values_map): |
|
out['add'].remove(item) |
|
else: |
|
values_map[item['value']] = item['similarity'] |
|
out['add'] = out['add'][0:5] |
|
|
|
out['remove'] = sorted(out['remove'], key=sort_by_similarity, reverse=True) |
|
values_map = {} |
|
for item in out['remove'][:]: |
|
if(item['value'] in values_map): |
|
out['remove'].remove(item) |
|
else: |
|
values_map[item['value']] = item['similarity'] |
|
out['remove'] = out['remove'][0:5] |
|
return out |
|
|
|
def get_thresholds( |
|
prompts, |
|
prompt_json, |
|
embedding_fn = None, |
|
): |
|
""" |
|
Function that recommends thresholds given an array of prompts. |
|
|
|
Args: |
|
prompts: The array with samples of prompts to be used in the system. |
|
prompt_json: Sentences to be forwarded to the recommendation endpoint. |
|
embedding_fn: Embedding function to convert prompt sentences into embeddings. |
|
If None, uses all-MiniLM-L6-v2 run locally. |
|
|
|
Returns: |
|
A map with thresholds for the sample prompts and the informed model. |
|
|
|
Raises: |
|
Nothing. |
|
""" |
|
|
|
if embedding_fn is None: |
|
embedding_fn = get_embedding_func('local', model_id='sentence-transformers/all-MiniLM-L6-v2') |
|
|
|
add_similarities = [] |
|
remove_similarities = [] |
|
|
|
for p_id, p in enumerate(prompts): |
|
out = recommend_prompt(p, prompt_json, embedding_fn, 0, 1, 0, 0, None) |
|
|
|
for r in out['add']: |
|
add_similarities.append(r['similarity']) |
|
for r in out['remove']: |
|
remove_similarities.append(r['similarity']) |
|
|
|
add_similarities_df = pd.DataFrame({'similarity': add_similarities}) |
|
remove_similarities_df = pd.DataFrame({'similarity': remove_similarities}) |
|
|
|
thresholds = {} |
|
thresholds['add_lower_threshold'] = round(add_similarities_df.describe([.1]).loc['10%', 'similarity'], 1) |
|
thresholds['add_higher_threshold'] = round(add_similarities_df.describe([.9]).loc['90%', 'similarity'], 1) |
|
thresholds['remove_lower_threshold'] = round(remove_similarities_df.describe([.1]).loc['10%', 'similarity'], 1) |
|
thresholds['remove_higher_threshold'] = round(remove_similarities_df.describe([.9]).loc['90%', 'similarity'], 1) |
|
|
|
return thresholds |