Spaces:
Sleeping
Sleeping
import transformers | |
import torch | |
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification | |
# Load tokenizer and model | |
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') | |
model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased') | |
# Define a function to preprocess user input | |
def preprocess_input(text): | |
encoded_input = tokenizer(text, return_tensors='pt') | |
return encoded_input | |
# Define a function to generate response based on user input | |
def generate_response(user_input): | |
encoded_input = preprocess_input(user_input) | |
outputs = model(**encoded_input) | |
# Extract relevant information from model outputs (e.g., predicted class) | |
# Based on the extracted information, formulate a response using predefined responses or logic | |
response = "I'm still under development, but I understand you said: {}".format(user_input) | |
return response | |
# Start the chat loop | |
while True: | |
user_input = input("You: ") | |
if user_input == "quit": | |
break | |
bot_response = generate_response(user_input) | |
print("Bot:", bot_response) | |