Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import torchvision.transforms as transforms | |
from PIL import Image | |
# Define the CNN model | |
class CNN(torch.nn.Module): | |
def __init__(self): | |
super(CNN, self).__init__() | |
self.conv1 = torch.nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1) | |
self.conv2 = torch.nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) | |
self.pool = torch.nn.MaxPool2d(2, 2) | |
self.fc1 = torch.nn.Linear(64 * 14 * 14, 128) | |
self.fc2 = torch.nn.Linear(128, 10) | |
self.relu = torch.nn.ReLU() | |
self.dropout = torch.nn.Dropout(0.25) | |
def forward(self, x): | |
x = self.relu(self.conv1(x)) | |
x = self.pool(self.relu(self.conv2(x))) | |
x = x.view(x.size(0), -1) # Flatten dynamically based on batch size | |
x = self.relu(self.fc1(x)) | |
x = self.dropout(x) | |
x = self.fc2(x) | |
return x | |
# Load the trained model | |
model = CNN() | |
model.load_state_dict(torch.load("pytorch_model.bin", map_location=torch.device('cpu'), weights_only=True)) | |
model.eval() | |
# Define the prediction function | |
def predict(image): | |
transform = transforms.Compose([ | |
transforms.Grayscale(), # Ensure the input image is grayscale | |
transforms.Resize((28, 28)), # Resize the image to 28x28 pixels | |
transforms.ToTensor(), | |
transforms.Normalize((0.5,), (0.5,)) # Normalize the image | |
]) | |
image_tensor = transform(image).unsqueeze(0) # Add batch dimension | |
with torch.no_grad(): | |
output = model(image_tensor) | |
predicted_class = output.argmax(dim=1).item() # Get the predicted class | |
return f"Predicted digit: {predicted_class}" | |
# Create the Gradio interface | |
interface = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil"), # Updated input component | |
outputs="text", | |
title="Handwritten Digit Classifier", | |
description="Upload an image of a handwritten digit, and the model will predict the digit." | |
) | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
interface.launch() # Removed share=True for Hugging Face Spaces | |