Spaces:
Sleeping
Sleeping
Emil Ernerfeldt
commited on
Commit
•
4337a31
1
Parent(s):
2959351
Log any and all columns of the dataset
Browse files- main.py +58 -26
- requirements.txt +2 -0
main.py
CHANGED
@@ -4,30 +4,62 @@ from __future__ import annotations
|
|
4 |
|
5 |
import rerun as rr
|
6 |
from datasets import load_dataset
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
)
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
import rerun as rr
|
6 |
from datasets import load_dataset
|
7 |
+
from PIL import Image
|
8 |
+
from tqdm import tqdm
|
9 |
|
10 |
+
|
11 |
+
def log_dataset_to_rerun(dataset) -> None:
|
12 |
+
# Special time-like columns
|
13 |
+
TIME_LIKE = {"index", "frame_id", "timestamp"}
|
14 |
+
|
15 |
+
# Ignore these columns
|
16 |
+
IGNORE = {"episode_data_index_from", "episode_data_index_to", "episode_id"}
|
17 |
+
|
18 |
+
num_rows = len(dataset)
|
19 |
+
for row_nr in tqdm(range(num_rows)):
|
20 |
+
row = dataset[row_nr]
|
21 |
+
|
22 |
+
# Handle time-like columns first, since they set a state (time is an index in Rerun):
|
23 |
+
for column_name in TIME_LIKE:
|
24 |
+
if column_name in row:
|
25 |
+
cell = row[column_name]
|
26 |
+
if isinstance(cell, int):
|
27 |
+
rr.set_time_sequence(column_name, cell)
|
28 |
+
elif isinstance(cell, float):
|
29 |
+
rr.set_time_seconds(column_name, cell) # assume seconds
|
30 |
+
else:
|
31 |
+
print(f"Unknown time-like column {column_name} with value {cell}")
|
32 |
+
|
33 |
+
# Now log actual data columns
|
34 |
+
for column_name in dataset.column_names:
|
35 |
+
if column_name in TIME_LIKE or column_name in IGNORE:
|
36 |
+
continue
|
37 |
+
|
38 |
+
cell = row[column_name]
|
39 |
+
if isinstance(cell, Image.Image):
|
40 |
+
rr.log(column_name, rr.Image(cell))
|
41 |
+
elif isinstance(cell, list):
|
42 |
+
rr.log(column_name, rr.BarChart(cell))
|
43 |
+
elif isinstance(cell, float) or isinstance(cell, int):
|
44 |
+
rr.log(column_name, rr.Scalar(cell))
|
45 |
+
else:
|
46 |
+
rr.log(column_name, rr.TextDocument(str(cell)))
|
47 |
+
|
48 |
+
|
49 |
+
def main():
|
50 |
+
print("Loading dataset…")
|
51 |
+
# dataset = load_dataset("lerobot/pusht", split="train")
|
52 |
+
dataset = load_dataset("lerobot/aloha_sim_transfer_cube_human", split="train")
|
53 |
+
|
54 |
+
print("Selecting specific episode…")
|
55 |
+
ds_subset = dataset.filter(lambda frame: frame["episode_id"] == 3)
|
56 |
+
|
57 |
+
print("Starting Rerun…")
|
58 |
+
rr.init("rerun_example_lerobot", spawn=True)
|
59 |
+
|
60 |
+
print("Logging to Rerun…")
|
61 |
+
log_dataset_to_rerun(ds_subset)
|
62 |
+
|
63 |
+
|
64 |
+
if __name__ == "__main__":
|
65 |
+
main()
|
requirements.txt
CHANGED
@@ -1,2 +1,4 @@
|
|
1 |
datasets
|
|
|
2 |
rerun-sdk>=0.15.0,<0.16.0
|
|
|
|
1 |
datasets
|
2 |
+
Pillow
|
3 |
rerun-sdk>=0.15.0,<0.16.0
|
4 |
+
tqdm
|