Spaces:
Sleeping
Sleeping
from __future__ import annotations | |
import logging | |
from typing import Any | |
import numpy as np | |
import rerun as rr | |
from PIL import Image | |
from tqdm import tqdm | |
logger = logging.getLogger(__name__) | |
def to_rerun(column_name: str, value: Any) -> Any: | |
"""Do our best to interpret the value and convert it to a Rerun-compatible archetype.""" | |
if isinstance(value, Image.Image): | |
if "depth" in column_name: | |
return rr.DepthImage(value) | |
else: | |
return rr.Image(value) | |
elif isinstance(value, np.ndarray): | |
return rr.Tensor(value) | |
elif isinstance(value, list): | |
if isinstance(value[0], float): | |
return rr.BarChart(value) | |
else: | |
return rr.TextDocument(str(value)) # Fallback to text | |
elif isinstance(value, float) or isinstance(value, int): | |
return rr.Scalar(value) | |
else: | |
return rr.TextDocument(str(value)) # Fallback to text | |
def log_dataset_to_rerun(dataset: Any) -> None: | |
# Special time-like columns for LeRobot datasets (https://huggingface.co/datasets/lerobot/): | |
TIME_LIKE = {"index", "frame_id", "timestamp"} | |
# Ignore these columns (again, LeRobot-specific): | |
IGNORE = {"episode_data_index_from", "episode_data_index_to", "episode_id"} | |
for row in tqdm(dataset): | |
# Handle time-like columns first, since they set a state (time is an index in Rerun): | |
for column_name in TIME_LIKE: | |
if column_name in row: | |
cell = row[column_name] | |
if isinstance(cell, int): | |
rr.set_time_sequence(column_name, cell) | |
elif isinstance(cell, float): | |
rr.set_time_seconds(column_name, cell) # assume seconds | |
else: | |
print(f"Unknown time-like column {column_name} with value {cell}") | |
# Now log actual data columns: | |
for column_name, cell in row.items(): | |
if column_name in TIME_LIKE or column_name in IGNORE: | |
continue | |
rr.log(column_name, to_rerun(column_name, cell)) | |