Spaces:
Running
on
Zero
Running
on
Zero
from __future__ import annotations | |
import os | |
import shutil | |
import threading | |
from queue import SimpleQueue | |
from typing import Any | |
import gradio as gr | |
import numpy as np | |
import rembg | |
import rerun as rr | |
import rerun.blueprint as rrb | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler | |
from einops import rearrange | |
from gradio_rerun import Rerun | |
from huggingface_hub import hf_hub_download | |
from omegaconf import OmegaConf | |
from PIL import Image | |
from pytorch_lightning import seed_everything | |
from torchvision.transforms import v2 | |
from src.models.lrm_mesh import InstantMesh | |
from src.utils.camera_util import ( | |
FOV_to_intrinsics, | |
get_circular_camera_poses, | |
get_zero123plus_input_cameras, | |
) | |
from src.utils.infer_util import remove_background, resize_foreground | |
from src.utils.train_util import instantiate_from_config | |
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False): | |
"""Get the rendering camera parameters.""" | |
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation) | |
if is_flexicubes: | |
cameras = torch.linalg.inv(c2ws) | |
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1) | |
else: | |
extrinsics = c2ws.flatten(-2) | |
intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2) | |
cameras = torch.cat([extrinsics, intrinsics], dim=-1) | |
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1) | |
return cameras | |
############################################################################### | |
# Configuration. | |
############################################################################### | |
def find_cuda(): | |
# Check if CUDA_HOME or CUDA_PATH environment variables are set | |
cuda_home = os.environ.get("CUDA_HOME") or os.environ.get("CUDA_PATH") | |
if cuda_home and os.path.exists(cuda_home): | |
return cuda_home | |
# Search for the nvcc executable in the system's PATH | |
nvcc_path = shutil.which("nvcc") | |
if nvcc_path: | |
# Remove the 'bin/nvcc' part to get the CUDA installation path | |
cuda_path = os.path.dirname(os.path.dirname(nvcc_path)) | |
return cuda_path | |
return None | |
cuda_path = find_cuda() | |
if cuda_path: | |
print(f"CUDA installation found at: {cuda_path}") | |
else: | |
print("CUDA installation not found") | |
config_path = "configs/instant-mesh-large.yaml" | |
config = OmegaConf.load(config_path) | |
config_name = os.path.basename(config_path).replace(".yaml", "") | |
model_config = config.model_config | |
infer_config = config.infer_config | |
IS_FLEXICUBES = True if config_name.startswith("instant-mesh") else False | |
device = torch.device("cuda") | |
# load diffusion model | |
print("Loading diffusion model ...") | |
pipeline = DiffusionPipeline.from_pretrained( | |
"sudo-ai/zero123plus-v1.2", | |
custom_pipeline="zero123plus", | |
torch_dtype=torch.float16, | |
) | |
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config, timestep_spacing="trailing") | |
# load custom white-background UNet | |
unet_ckpt_path = hf_hub_download( | |
repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model" | |
) | |
state_dict = torch.load(unet_ckpt_path, map_location="cpu") | |
pipeline.unet.load_state_dict(state_dict, strict=True) | |
pipeline = pipeline.to(device) | |
print(f"type(pipeline)={type(pipeline)}") | |
# load reconstruction model | |
print("Loading reconstruction model ...") | |
model_ckpt_path = hf_hub_download( | |
repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model" | |
) | |
model: InstantMesh = instantiate_from_config(model_config) | |
state_dict = torch.load(model_ckpt_path, map_location="cpu")["state_dict"] | |
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith("lrm_generator.") and "source_camera" not in k} | |
model.load_state_dict(state_dict, strict=True) | |
model = model.to(device) | |
print("Loading Finished!") | |
def check_input_image(input_image): | |
if input_image is None: | |
raise gr.Error("No image uploaded!") | |
def preprocess(input_image, do_remove_background): | |
rembg_session = rembg.new_session() if do_remove_background else None | |
if do_remove_background: | |
input_image = remove_background(input_image, rembg_session) | |
input_image = resize_foreground(input_image, 0.85) | |
return input_image | |
def pipeline_callback( | |
log_queue: SimpleQueue, pipe: Any, step_index: int, timestep: float, callback_kwargs: dict[str, Any] | |
) -> dict[str, Any]: | |
latents = callback_kwargs["latents"] | |
image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0] # type: ignore[attr-defined] | |
image = pipe.image_processor.postprocess(image, output_type="np").squeeze() # type: ignore[attr-defined] | |
log_queue.put(("mvs", rr.Image(image))) | |
log_queue.put(("latents", rr.Tensor(latents.squeeze()))) | |
return callback_kwargs | |
def generate_mvs(log_queue, input_image, sample_steps, sample_seed): | |
seed_everything(sample_seed) | |
return pipeline( | |
input_image, | |
num_inference_steps=sample_steps, | |
callback_on_step_end=lambda *args, **kwargs: pipeline_callback(log_queue, *args, **kwargs), | |
).images[0] | |
def make3d(log_queue, images: Image.Image): | |
global model | |
if IS_FLEXICUBES: | |
model.init_flexicubes_geometry(device, use_renderer=False) | |
model = model.eval() | |
images = np.asarray(images, dtype=np.float32) / 255.0 | |
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640) | |
images = rearrange(images, "c (n h) (m w) -> (n m) c h w", n=3, m=2) # (6, 3, 320, 320) | |
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device) | |
images = images.unsqueeze(0).to(device) | |
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1) | |
with torch.no_grad(): | |
# get triplane | |
planes = model.forward_planes(images, input_cameras) | |
# get mesh | |
mesh_out = model.extract_mesh( | |
planes, | |
use_texture_map=False, | |
**infer_config, | |
) | |
vertices, faces, vertex_colors = mesh_out | |
log_queue.put(( | |
"mesh", | |
rr.Mesh3D(vertex_positions=vertices, vertex_colors=vertex_colors, triangle_indices=faces), | |
)) | |
return mesh_out | |
def generate_blueprint() -> rrb.Blueprint: | |
return rrb.Blueprint( | |
rrb.Horizontal( | |
rrb.Spatial3DView(origin="mesh"), | |
rrb.Grid( | |
rrb.Spatial2DView(origin="z123image"), | |
rrb.Spatial2DView(origin="preprocessed_image"), | |
rrb.Spatial2DView(origin="mvs"), | |
rrb.TensorView( | |
origin="latents", | |
), | |
), | |
column_shares=[1, 1], | |
), | |
collapse_panels=True, | |
) | |
def compute(log_queue, input_image, do_remove_background, sample_steps, sample_seed): | |
preprocessed_image = preprocess(input_image, do_remove_background) | |
log_queue.put(("preprocessed_image", rr.Image(preprocessed_image))) | |
z123_image = generate_mvs(log_queue, preprocessed_image, sample_steps, sample_seed) | |
log_queue.put(("z123image", rr.Image(z123_image))) | |
_mesh_out = make3d(log_queue, z123_image) | |
log_queue.put("done") | |
def log_to_rr(input_image, do_remove_background, sample_steps, sample_seed): | |
log_queue = SimpleQueue() | |
stream = rr.binary_stream() | |
blueprint = generate_blueprint() | |
rr.send_blueprint(blueprint) | |
yield stream.read() | |
handle = threading.Thread( | |
target=compute, args=[log_queue, input_image, do_remove_background, sample_steps, sample_seed] | |
) | |
handle.start() | |
while True: | |
msg = log_queue.get() | |
if msg == "done": | |
break | |
else: | |
entity_path, entity = msg | |
rr.log(entity_path, entity) | |
yield stream.read() | |
handle.join() | |
_HEADER_ = """ | |
<h2><b>Duplicate of the <a href='https://huggingface.co/spaces/TencentARC/InstantMesh'>InstantMesh space</a> that uses <a href='https://rerun.io/'>Rerun</a> for visualization.</b></h2> | |
<h2><a href='https://github.com/TencentARC/InstantMesh' target='_blank'><b>InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models</b></a></h2> | |
**InstantMesh** is a feed-forward framework for efficient 3D mesh generation from a single image based on the LRM/Instant3D architecture. | |
Technical report: <a href='https://arxiv.org/abs/2404.07191' target='_blank'>ArXiv</a>. | |
Source code: <a href='https://github.com/rerun-io/hf-example-instant-mesh'>Github</a>. | |
""" | |
with gr.Blocks() as demo: | |
gr.Markdown(_HEADER_) | |
with gr.Row(variant="panel"): | |
with gr.Column(scale=1): | |
with gr.Row(): | |
input_image = gr.Image( | |
label="Input Image", | |
image_mode="RGBA", | |
sources="upload", | |
# width=256, | |
# height=256, | |
type="pil", | |
elem_id="content_image", | |
) | |
with gr.Row(): | |
with gr.Group(): | |
do_remove_background = gr.Checkbox(label="Remove Background", value=True) | |
sample_seed = gr.Number(value=42, label="Seed Value", precision=0) | |
sample_steps = gr.Slider(label="Sample Steps", minimum=30, maximum=75, value=75, step=5) | |
with gr.Row(): | |
submit = gr.Button("Generate", elem_id="generate", variant="primary") | |
with gr.Row(variant="panel"): | |
gr.Examples( | |
examples=[os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))], | |
inputs=[input_image], | |
label="Examples", | |
cache_examples=False, | |
examples_per_page=16, | |
) | |
with gr.Column(scale=2): | |
viewer = Rerun(streaming=True, height=800) | |
with gr.Row(): | |
gr.Markdown("""Try a different <b>seed value</b> if the result is unsatisfying (Default: 42).""") | |
mv_images = gr.State() | |
submit.click(fn=check_input_image, inputs=[input_image]).success( | |
fn=log_to_rr, inputs=[input_image, do_remove_background, sample_steps, sample_seed], outputs=[viewer] | |
) | |
demo.launch() | |