Spaces:
Sleeping
Sleeping
Tanishq
commited on
Commit
•
2972f68
1
Parent(s):
1c7c760
Upload 7 files
Browse files- config.py +23 -0
- dataset.py +39 -0
- model.py +151 -0
- requirements.txt +7 -0
- train.py +144 -0
- uploads/31572.jpg +0 -0
- utils.py +21 -0
config.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from albumentations.pytorch import ToTensorV2
|
3 |
+
import albumentations as A
|
4 |
+
|
5 |
+
# DEVICE = "cpu"
|
6 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
7 |
+
TRAIN_DIR = "images/train"
|
8 |
+
VAL_DIR = "images/validation"
|
9 |
+
LEARNING_RATE = 2e-3
|
10 |
+
BATCH_SIZE = 128
|
11 |
+
NUM_WORKERS = 2
|
12 |
+
NUM_EPOCHS = 100
|
13 |
+
LOAD_MODEL = True
|
14 |
+
SAVE_MODEL = True
|
15 |
+
CHECKPOINT = "face_emotion.pth.tar"
|
16 |
+
|
17 |
+
transform = A.Compose(
|
18 |
+
[
|
19 |
+
A.Resize(height=48, width=48),
|
20 |
+
A.Normalize(mean=[0.5], std=[0.5], max_pixel_value=255.0, ),
|
21 |
+
ToTensorV2(),
|
22 |
+
]
|
23 |
+
)
|
dataset.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from torch.utils.data import Dataset
|
6 |
+
import config
|
7 |
+
|
8 |
+
|
9 |
+
class EmotionDataset(Dataset):
|
10 |
+
def __init__(self, root_dir, transform=config.transform):
|
11 |
+
self.root_dir = root_dir
|
12 |
+
self.transform = transform
|
13 |
+
self.classes = sorted(os.listdir(root_dir))
|
14 |
+
self.class_to_idx = {cls: idx for idx, cls in enumerate(self.classes)}
|
15 |
+
self.file_list = self.create_file_list()
|
16 |
+
|
17 |
+
def create_file_list(self):
|
18 |
+
file_list = []
|
19 |
+
for cls in self.classes:
|
20 |
+
class_path = os.path.join(self.root_dir, cls)
|
21 |
+
for file_name in os.listdir(class_path):
|
22 |
+
file_path = os.path.join(class_path, file_name)
|
23 |
+
file_list.append((file_path, self.class_to_idx[cls]))
|
24 |
+
return file_list
|
25 |
+
|
26 |
+
def __len__(self):
|
27 |
+
return len(self.file_list)
|
28 |
+
|
29 |
+
def __getitem__(self, idx):
|
30 |
+
img_path, label = self.file_list[idx]
|
31 |
+
image = np.array(Image.open(img_path).convert('L'))
|
32 |
+
target = [0]*7
|
33 |
+
target[label] = 1
|
34 |
+
target = torch.FloatTensor(target)
|
35 |
+
|
36 |
+
if self.transform:
|
37 |
+
image = config.transform(image=image)["image"]
|
38 |
+
|
39 |
+
return image, target
|
model.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from torch import nn as nn
|
2 |
+
#
|
3 |
+
#
|
4 |
+
# class EmotionModel(nn.Module):
|
5 |
+
# def __init__(self, in_channels=1, num_classes=7):
|
6 |
+
# super(EmotionModel, self).__init__()
|
7 |
+
# self.conv1 = nn.Conv2d(
|
8 |
+
# in_channels=in_channels, out_channels=256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)
|
9 |
+
# )
|
10 |
+
# self.relu1 = nn.ReLU()
|
11 |
+
# self.pool1 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
12 |
+
# self.drop1 = nn.Dropout2d(0.4)
|
13 |
+
#
|
14 |
+
# self.conv2 = nn.Conv2d(in_channels=256, out_channels=512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
15 |
+
# self.relu2 = nn.ReLU()
|
16 |
+
# self.pool2 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
17 |
+
# self.drop2 = nn.Dropout2d(0.4)
|
18 |
+
#
|
19 |
+
# self.conv3 = nn.Conv2d(in_channels=512, out_channels=512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
20 |
+
# self.relu3 = nn.ReLU()
|
21 |
+
# self.pool3 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
22 |
+
# self.drop3 = nn.Dropout2d(0.4)
|
23 |
+
#
|
24 |
+
# self.conv4 = nn.Conv2d(
|
25 |
+
# in_channels=512, out_channels=512 * 4 * 4, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)
|
26 |
+
# )
|
27 |
+
# self.relu4 = nn.ReLU()
|
28 |
+
# self.pool4 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
29 |
+
# self.drop4 = nn.Dropout2d(0.4)
|
30 |
+
#
|
31 |
+
# self.fc1 = nn.Linear(in_features=512 * 4 * 4, out_features=512)
|
32 |
+
# self.relu5 = nn.ReLU()
|
33 |
+
# self.drop5 = nn.Dropout(0.3)
|
34 |
+
# self.fc2 = nn.Linear(in_features=512, out_features=256)
|
35 |
+
# self.relu6 = nn.ReLU()
|
36 |
+
# self.drop6 = nn.Dropout(0.3)
|
37 |
+
# self.fc3 = nn.Linear(in_features=256, out_features=num_classes)
|
38 |
+
# self.softmax = nn.Softmax(dim=1)
|
39 |
+
#
|
40 |
+
# def forward(self, x):
|
41 |
+
# x = self.conv1(x)
|
42 |
+
# x = self.relu1(x)
|
43 |
+
# x = self.pool1(x)
|
44 |
+
# x = self.drop1(x)
|
45 |
+
# x = self.conv2(x)
|
46 |
+
# x = self.relu2(x)
|
47 |
+
# x = self.pool2(x)
|
48 |
+
# x = self.drop2(x)
|
49 |
+
# x = self.conv3(x)
|
50 |
+
# x = self.relu3(x)
|
51 |
+
# x = self.pool3(x)
|
52 |
+
# x = self.drop3(x)
|
53 |
+
# x = self.conv4(x)
|
54 |
+
# x = self.relu4(x)
|
55 |
+
# x = self.pool4(x)
|
56 |
+
# x = self.drop4(x)
|
57 |
+
# x = x.view(-1, 512 * 4 * 4)
|
58 |
+
# x = self.fc1(x)
|
59 |
+
# x = self.relu5(x)
|
60 |
+
# x = self.drop5(x)
|
61 |
+
# x = self.fc2(x)
|
62 |
+
# x = self.relu6(x)
|
63 |
+
# x = self.drop6(x)
|
64 |
+
# x = self.fc3(x)
|
65 |
+
# x = self.softmax(x)
|
66 |
+
# return x
|
67 |
+
|
68 |
+
import torch.nn as nn
|
69 |
+
|
70 |
+
|
71 |
+
class EmotionModel(nn.Module):
|
72 |
+
def __init__(self, in_channels=1, num_classes=7):
|
73 |
+
super(EmotionModel, self).__init__()
|
74 |
+
self.conv1 = nn.Conv2d(in_channels, 256, kernel_size=3, stride=2, padding=1)
|
75 |
+
self.bn1 = nn.BatchNorm2d(256)
|
76 |
+
self.relu1 = nn.ReLU()
|
77 |
+
self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
78 |
+
self.drop1 = nn.Dropout2d(0.4)
|
79 |
+
|
80 |
+
self.conv2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1)
|
81 |
+
self.bn2 = nn.BatchNorm2d(512)
|
82 |
+
self.relu2 = nn.ReLU()
|
83 |
+
self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
84 |
+
self.drop2 = nn.Dropout2d(0.4)
|
85 |
+
|
86 |
+
self.conv3 = nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1)
|
87 |
+
self.bn3 = nn.BatchNorm2d(512)
|
88 |
+
self.relu3 = nn.ReLU()
|
89 |
+
self.pool3 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
90 |
+
self.drop3 = nn.Dropout2d(0.4)
|
91 |
+
|
92 |
+
self.conv4 = nn.Conv2d(512, 512 * 4 * 4, kernel_size=3, stride=2, padding=1)
|
93 |
+
self.bn4 = nn.BatchNorm2d(512 * 4 * 4)
|
94 |
+
self.relu4 = nn.ReLU()
|
95 |
+
self.pool4 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
96 |
+
self.drop4 = nn.Dropout2d(0.4)
|
97 |
+
|
98 |
+
self.fc1 = nn.Linear(512 * 4 * 4, 512)
|
99 |
+
self.bn_fc1 = nn.BatchNorm1d(512)
|
100 |
+
self.relu5 = nn.ReLU()
|
101 |
+
self.drop5 = nn.Dropout(0.3)
|
102 |
+
|
103 |
+
self.fc2 = nn.Linear(512, 256)
|
104 |
+
self.bn_fc2 = nn.BatchNorm1d(256)
|
105 |
+
self.relu6 = nn.ReLU()
|
106 |
+
self.drop6 = nn.Dropout(0.3)
|
107 |
+
|
108 |
+
self.fc3 = nn.Linear(256, num_classes)
|
109 |
+
self.softmax = nn.Softmax(dim=1)
|
110 |
+
|
111 |
+
def forward(self, x):
|
112 |
+
x = self.conv1(x)
|
113 |
+
x = self.bn1(x)
|
114 |
+
x = self.relu1(x)
|
115 |
+
x = self.pool1(x)
|
116 |
+
x = self.drop1(x)
|
117 |
+
|
118 |
+
x = self.conv2(x)
|
119 |
+
x = self.bn2(x)
|
120 |
+
x = self.relu2(x)
|
121 |
+
x = self.pool2(x)
|
122 |
+
x = self.drop2(x)
|
123 |
+
|
124 |
+
x = self.conv3(x)
|
125 |
+
x = self.bn3(x)
|
126 |
+
x = self.relu3(x)
|
127 |
+
x = self.pool3(x)
|
128 |
+
x = self.drop3(x)
|
129 |
+
|
130 |
+
x = self.conv4(x)
|
131 |
+
x = self.bn4(x)
|
132 |
+
x = self.relu4(x)
|
133 |
+
x = self.pool4(x)
|
134 |
+
x = self.drop4(x)
|
135 |
+
|
136 |
+
x = x.view(-1, 512 * 4 * 4)
|
137 |
+
|
138 |
+
x = self.fc1(x)
|
139 |
+
x = self.bn_fc1(x)
|
140 |
+
x = self.relu5(x)
|
141 |
+
x = self.drop5(x)
|
142 |
+
|
143 |
+
x = self.fc2(x)
|
144 |
+
x = self.bn_fc2(x)
|
145 |
+
x = self.relu6(x)
|
146 |
+
x = self.drop6(x)
|
147 |
+
|
148 |
+
x = self.fc3(x)
|
149 |
+
x = self.softmax(x)
|
150 |
+
|
151 |
+
return x
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
streamlit
|
3 |
+
tqdm
|
4 |
+
albumentations
|
5 |
+
numpy
|
6 |
+
Pillow
|
7 |
+
matplotlib
|
train.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from matplotlib import pyplot as plt
|
6 |
+
from torch import nn as nn, optim
|
7 |
+
from torch.utils.data import DataLoader
|
8 |
+
from tqdm import tqdm
|
9 |
+
import config
|
10 |
+
from dataset import EmotionDataset
|
11 |
+
from model import EmotionModel
|
12 |
+
from utils import load_checkpoint, save_checkpoint
|
13 |
+
|
14 |
+
|
15 |
+
def train_fn(model, loader, opt, criterion, epoch):
|
16 |
+
loop = tqdm(loader, leave=True)
|
17 |
+
model.train()
|
18 |
+
epoch_loss = 0.0
|
19 |
+
|
20 |
+
for idx, (image, label) in enumerate(loop):
|
21 |
+
total_acc, total_count = 0, 0
|
22 |
+
image = image.to(config.DEVICE)
|
23 |
+
label = label.to(config.DEVICE)
|
24 |
+
opt.zero_grad()
|
25 |
+
predicted_label = model(image)
|
26 |
+
loss = criterion(predicted_label, label)
|
27 |
+
epoch_loss += loss.item()
|
28 |
+
loss.backward()
|
29 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)
|
30 |
+
opt.step()
|
31 |
+
total_acc += (predicted_label.argmax(1) == label.argmax(1)).sum().item()
|
32 |
+
total_count += label.size(0)
|
33 |
+
loop.set_postfix({"epoch": epoch, "loss": epoch_loss / len(loader), "accuracy": total_acc / total_count})
|
34 |
+
|
35 |
+
|
36 |
+
def main():
|
37 |
+
model = EmotionModel().to(config.DEVICE)
|
38 |
+
opt = optim.Adam(model.parameters(), lr=config.LEARNING_RATE, betas=(0.5, 0.999), )
|
39 |
+
criterion = nn.CrossEntropyLoss()
|
40 |
+
|
41 |
+
# if config.LOAD_MODEL:
|
42 |
+
# load_checkpoint(
|
43 |
+
# config.CHECKPOINT, model, opt, config.LEARNING_RATE,
|
44 |
+
# )
|
45 |
+
|
46 |
+
train_dataset = EmotionDataset(root_dir=config.TRAIN_DIR)
|
47 |
+
train_loader = DataLoader(
|
48 |
+
train_dataset,
|
49 |
+
batch_size=config.BATCH_SIZE,
|
50 |
+
shuffle=True,
|
51 |
+
num_workers=config.NUM_WORKERS,
|
52 |
+
)
|
53 |
+
val_dataset = EmotionDataset(root_dir=config.VAL_DIR)
|
54 |
+
val_loader = DataLoader(
|
55 |
+
val_dataset,
|
56 |
+
batch_size=config.BATCH_SIZE,
|
57 |
+
shuffle=True,
|
58 |
+
num_workers=config.NUM_WORKERS,
|
59 |
+
)
|
60 |
+
|
61 |
+
total_accu = None
|
62 |
+
# scheduler = torch.optim.lr_scheduler.StepLR(opt, 1, gamma=0.5)
|
63 |
+
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(opt, patience=2, verbose=True)
|
64 |
+
for epoch in range(config.NUM_EPOCHS):
|
65 |
+
epoch_start_time = time.time()
|
66 |
+
train_fn(
|
67 |
+
model, train_loader, opt, criterion, epoch
|
68 |
+
)
|
69 |
+
accu_val, loss_val = evaluate(model, criterion, val_loader)
|
70 |
+
# if total_accu is not None and total_accu > accu_val:
|
71 |
+
# scheduler.step()
|
72 |
+
# else:
|
73 |
+
# total_accu = accu_val
|
74 |
+
scheduler.step(loss_val)
|
75 |
+
print("+" + "-" * 19 + "+" + "-" * 15 + "+" + "-" * 20 + "+" + "-" * 24 + "+")
|
76 |
+
print(
|
77 |
+
"| end of epoch: {:3d} | time: {:6.2f}s | val_loss: {:8.3f} | "
|
78 |
+
"val_accuracy: {:8.3f} |".format(
|
79 |
+
epoch, time.time() - epoch_start_time, loss_val, accu_val
|
80 |
+
)
|
81 |
+
)
|
82 |
+
print("+" + "-" * 19 + "+" + "-" * 15 + "+" + "-" * 20 + "+" + "-" * 24 + "+")
|
83 |
+
|
84 |
+
if config.SAVE_MODEL:
|
85 |
+
save_checkpoint(model, opt, filename=config.CHECKPOINT)
|
86 |
+
|
87 |
+
|
88 |
+
def test():
|
89 |
+
model = EmotionModel().to(config.DEVICE)
|
90 |
+
opt = optim.Adam(model.parameters(), lr=config.LEARNING_RATE, betas=(0.5, 0.999), )
|
91 |
+
criterion = nn.CrossEntropyLoss()
|
92 |
+
if config.LOAD_MODEL:
|
93 |
+
load_checkpoint(
|
94 |
+
config.CHECKPOINT, model, opt, config.LEARNING_RATE,
|
95 |
+
)
|
96 |
+
|
97 |
+
val_dataset = EmotionDataset(root_dir=config.VAL_DIR)
|
98 |
+
val_loader = DataLoader(
|
99 |
+
val_dataset,
|
100 |
+
batch_size=config.BATCH_SIZE,
|
101 |
+
shuffle=True,
|
102 |
+
num_workers=config.NUM_WORKERS,
|
103 |
+
)
|
104 |
+
# print(evaluate(model, criterion, val_loader))
|
105 |
+
model.eval()
|
106 |
+
print(val_dataset.class_to_idx)
|
107 |
+
image = np.array(Image.open("images/validation/angry/245.jpg").convert('L'))
|
108 |
+
plt.imshow(image)
|
109 |
+
image = config.transform(image=image)["image"]
|
110 |
+
image = image.to(config.DEVICE)
|
111 |
+
image = torch.unsqueeze(image, dim=0)
|
112 |
+
score = model(image)
|
113 |
+
print(torch.argmax(score))
|
114 |
+
plt.show()
|
115 |
+
|
116 |
+
|
117 |
+
def evaluate(model, criterion, dataloader):
|
118 |
+
model.eval()
|
119 |
+
total_correct = 0
|
120 |
+
total_samples = 0
|
121 |
+
total_loss = 0.0
|
122 |
+
|
123 |
+
with torch.no_grad():
|
124 |
+
for inputs, labels in dataloader:
|
125 |
+
inputs, labels = inputs.to(config.DEVICE), labels.to(config.DEVICE)
|
126 |
+
|
127 |
+
outputs = model(inputs)
|
128 |
+
loss = criterion(outputs, labels)
|
129 |
+
|
130 |
+
total_loss += loss.item()
|
131 |
+
|
132 |
+
_, predicted = torch.max(outputs, 1)
|
133 |
+
|
134 |
+
total_correct += (predicted == labels.argmax(1)).sum().item()
|
135 |
+
total_samples += labels.size(0)
|
136 |
+
|
137 |
+
accuracy = total_correct / total_samples
|
138 |
+
average_loss = total_loss / len(dataloader)
|
139 |
+
|
140 |
+
return accuracy, average_loss
|
141 |
+
|
142 |
+
|
143 |
+
if __name__ == "__main__":
|
144 |
+
test()
|
uploads/31572.jpg
ADDED
utils.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import config
|
3 |
+
|
4 |
+
|
5 |
+
def save_checkpoint(model, optimizer, filename="my_checkpoint.pth.tar"):
|
6 |
+
print("=> Saving checkpoint")
|
7 |
+
checkpoint = {
|
8 |
+
"state_dict": model.state_dict(),
|
9 |
+
"optimizer": optimizer.state_dict(),
|
10 |
+
}
|
11 |
+
torch.save(checkpoint, filename)
|
12 |
+
|
13 |
+
|
14 |
+
def load_checkpoint(checkpoint_file, model, optimizer, lr):
|
15 |
+
print("=> Loading checkpoint")
|
16 |
+
checkpoint = torch.load(checkpoint_file, map_location=config.DEVICE)
|
17 |
+
model.load_state_dict(checkpoint["state_dict"])
|
18 |
+
optimizer.load_state_dict(checkpoint["optimizer"])
|
19 |
+
|
20 |
+
for param_group in optimizer.param_groups:
|
21 |
+
param_group["lr"] = lr
|