chat / app.py
mvkvc
Add streaming toggle
6fe4e50
import os
from openai import AsyncOpenAI
import gradio as gr
default_model = "llama3:8b-instruct-q4_K_M"
models = ["llama3:8b-instruct-q4_K_M", "codestral:22b-v0.1-q4_K_M"]
description = "Learn more at https://replicantzk.com."
base_url = os.getenv("OPENAI_BASE_URL") or "https://platform.replicantzk.com"
api_key = os.getenv("OPENAI_API_KEY")
async def predict(message, history, model, temperature, stream, base_url, api_key):
client = AsyncOpenAI(base_url=base_url, api_key=api_key)
history_openai_format = []
for human, assistant in history:
history_openai_format.append({"role": "user", "content": human})
history_openai_format.append({"role": "assistant", "content": assistant})
history_openai_format.append({"role": "user", "content": message})
try:
response = await client.chat.completions.create(
model=model,
messages=history_openai_format,
temperature=temperature,
stream=stream,
)
if stream:
partial_message = ""
async for chunk in response:
if chunk.choices[0].delta.content is not None:
partial_message += chunk.choices[0].delta.content
yield partial_message
else:
yield response.choices[0].message.content
except Exception as e:
raise gr.Error(str(e))
model = gr.Dropdown(label="Model", choices=models, value=default_model)
temperature = gr.Slider(0, 1, value=0, label="Temperature")
stream = gr.Checkbox(value=True, label="Stream")
base_url = gr.Textbox(label="OpenAI-compatible base URL", value=base_url)
api_key = gr.Textbox(label="OpenAI-compatible API key", type="password", value=api_key)
demo = gr.ChatInterface(
fn=predict,
additional_inputs=[model, temperature, stream, base_url, api_key],
description=description,
)
if __name__ == "__main__":
demo.launch()