FAMILIA commited on
Commit
0d11573
1 Parent(s): d205911
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. LICENSE +351 -0
  2. MANIFEST.in +8 -0
  3. VERSION +1 -0
  4. app.py +3 -73
  5. app2.py +118 -0
  6. cog_predict.py +151 -0
  7. experiments/pretrained_models/GFPGANCleanv1-NoCE-C2_original.pth +3 -0
  8. experiments/pretrained_models/GFPGANCleanv1-NoCE-C2_original_net_d.pth +3 -0
  9. experiments/pretrained_models/GFPGANv1.3.pth +3 -0
  10. experiments/pretrained_models/GFPGANv1.4.pth +3 -0
  11. experiments/pretrained_models/GFPGANv1.pth +3 -0
  12. experiments/pretrained_models/GFPGANv1_net_d_left_eye.pth +3 -0
  13. experiments/pretrained_models/GFPGANv1_net_d_right_eye.pth +3 -0
  14. experiments/pretrained_models/README.md +7 -0
  15. gfpgan/__init__.py +7 -0
  16. gfpgan/__pycache__/__init__.cpython-310.pyc +0 -0
  17. gfpgan/__pycache__/__init__.cpython-37.pyc +0 -0
  18. gfpgan/__pycache__/utils.cpython-310.pyc +0 -0
  19. gfpgan/__pycache__/utils.cpython-37.pyc +0 -0
  20. gfpgan/archs/__init__.py +10 -0
  21. gfpgan/archs/__pycache__/__init__.cpython-310.pyc +0 -0
  22. gfpgan/archs/__pycache__/__init__.cpython-37.pyc +0 -0
  23. gfpgan/archs/__pycache__/arcface_arch.cpython-310.pyc +0 -0
  24. gfpgan/archs/__pycache__/arcface_arch.cpython-37.pyc +0 -0
  25. gfpgan/archs/__pycache__/gfpgan_bilinear_arch.cpython-310.pyc +0 -0
  26. gfpgan/archs/__pycache__/gfpgan_bilinear_arch.cpython-37.pyc +0 -0
  27. gfpgan/archs/__pycache__/gfpganv1_arch.cpython-310.pyc +0 -0
  28. gfpgan/archs/__pycache__/gfpganv1_arch.cpython-37.pyc +0 -0
  29. gfpgan/archs/__pycache__/gfpganv1_clean_arch.cpython-310.pyc +0 -0
  30. gfpgan/archs/__pycache__/gfpganv1_clean_arch.cpython-37.pyc +0 -0
  31. gfpgan/archs/__pycache__/stylegan2_bilinear_arch.cpython-310.pyc +0 -0
  32. gfpgan/archs/__pycache__/stylegan2_bilinear_arch.cpython-37.pyc +0 -0
  33. gfpgan/archs/__pycache__/stylegan2_clean_arch.cpython-310.pyc +0 -0
  34. gfpgan/archs/__pycache__/stylegan2_clean_arch.cpython-37.pyc +0 -0
  35. gfpgan/archs/arcface_arch.py +245 -0
  36. gfpgan/archs/gfpgan_bilinear_arch.py +312 -0
  37. gfpgan/archs/gfpganv1_arch.py +439 -0
  38. gfpgan/archs/gfpganv1_clean_arch.py +324 -0
  39. gfpgan/archs/stylegan2_bilinear_arch.py +613 -0
  40. gfpgan/archs/stylegan2_clean_arch.py +368 -0
  41. gfpgan/data/__init__.py +10 -0
  42. gfpgan/data/__pycache__/__init__.cpython-310.pyc +0 -0
  43. gfpgan/data/__pycache__/__init__.cpython-37.pyc +0 -0
  44. gfpgan/data/__pycache__/ffhq_degradation_dataset.cpython-310.pyc +0 -0
  45. gfpgan/data/__pycache__/ffhq_degradation_dataset.cpython-37.pyc +0 -0
  46. gfpgan/data/ffhq_degradation_dataset.py +230 -0
  47. gfpgan/models/__init__.py +10 -0
  48. gfpgan/models/__pycache__/__init__.cpython-310.pyc +0 -0
  49. gfpgan/models/__pycache__/__init__.cpython-37.pyc +0 -0
  50. gfpgan/models/__pycache__/gfpgan_model.cpython-310.pyc +0 -0
LICENSE ADDED
@@ -0,0 +1,351 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Tencent is pleased to support the open source community by making GFPGAN available.
2
+
3
+ Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
4
+
5
+ GFPGAN is licensed under the Apache License Version 2.0 except for the third-party components listed below.
6
+
7
+
8
+ Terms of the Apache License Version 2.0:
9
+ ---------------------------------------------
10
+ Apache License
11
+
12
+ Version 2.0, January 2004
13
+
14
+ http://www.apache.org/licenses/
15
+
16
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
17
+ 1. Definitions.
18
+
19
+ “License” shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document.
20
+
21
+ “Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.
22
+
23
+ “Legal Entity” shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, “control” means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.
24
+
25
+ “You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this License.
26
+
27
+ “Source” form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files.
28
+
29
+ “Object” form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.
30
+
31
+ “Work” shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below).
32
+
33
+ “Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.
34
+
35
+ “Contribution” shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, “submitted” means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”
36
+
37
+ “Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work.
38
+
39
+ 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.
40
+
41
+ 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed.
42
+
43
+ 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:
44
+
45
+ You must give any other recipients of the Work or Derivative Works a copy of this License; and
46
+
47
+ You must cause any modified files to carry prominent notices stating that You changed the files; and
48
+
49
+ You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and
50
+
51
+ If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License.
52
+
53
+ You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License.
54
+
55
+ 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions.
56
+
57
+ 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file.
58
+
59
+ 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License.
60
+
61
+ 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.
62
+
63
+ 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability.
64
+
65
+ END OF TERMS AND CONDITIONS
66
+
67
+
68
+
69
+ Other dependencies and licenses:
70
+
71
+
72
+ Open Source Software licensed under the Apache 2.0 license and Other Licenses of the Third-Party Components therein:
73
+ ---------------------------------------------
74
+ 1. basicsr
75
+ Copyright 2018-2020 BasicSR Authors
76
+
77
+
78
+ This BasicSR project is released under the Apache 2.0 license.
79
+
80
+ A copy of Apache 2.0 is included in this file.
81
+
82
+ StyleGAN2
83
+ The codes are modified from the repository stylegan2-pytorch. Many thanks to the author - Kim Seonghyeon 😊 for translating from the official TensorFlow codes to PyTorch ones. Here is the license of stylegan2-pytorch.
84
+ The official repository is https://github.com/NVlabs/stylegan2, and here is the NVIDIA license.
85
+ DFDNet
86
+ The codes are largely modified from the repository DFDNet. Their license is Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
87
+
88
+ Terms of the Nvidia License:
89
+ ---------------------------------------------
90
+
91
+ 1. Definitions
92
+
93
+ "Licensor" means any person or entity that distributes its Work.
94
+
95
+ "Software" means the original work of authorship made available under
96
+ this License.
97
+
98
+ "Work" means the Software and any additions to or derivative works of
99
+ the Software that are made available under this License.
100
+
101
+ "Nvidia Processors" means any central processing unit (CPU), graphics
102
+ processing unit (GPU), field-programmable gate array (FPGA),
103
+ application-specific integrated circuit (ASIC) or any combination
104
+ thereof designed, made, sold, or provided by Nvidia or its affiliates.
105
+
106
+ The terms "reproduce," "reproduction," "derivative works," and
107
+ "distribution" have the meaning as provided under U.S. copyright law;
108
+ provided, however, that for the purposes of this License, derivative
109
+ works shall not include works that remain separable from, or merely
110
+ link (or bind by name) to the interfaces of, the Work.
111
+
112
+ Works, including the Software, are "made available" under this License
113
+ by including in or with the Work either (a) a copyright notice
114
+ referencing the applicability of this License to the Work, or (b) a
115
+ copy of this License.
116
+
117
+ 2. License Grants
118
+
119
+ 2.1 Copyright Grant. Subject to the terms and conditions of this
120
+ License, each Licensor grants to you a perpetual, worldwide,
121
+ non-exclusive, royalty-free, copyright license to reproduce,
122
+ prepare derivative works of, publicly display, publicly perform,
123
+ sublicense and distribute its Work and any resulting derivative
124
+ works in any form.
125
+
126
+ 3. Limitations
127
+
128
+ 3.1 Redistribution. You may reproduce or distribute the Work only
129
+ if (a) you do so under this License, (b) you include a complete
130
+ copy of this License with your distribution, and (c) you retain
131
+ without modification any copyright, patent, trademark, or
132
+ attribution notices that are present in the Work.
133
+
134
+ 3.2 Derivative Works. You may specify that additional or different
135
+ terms apply to the use, reproduction, and distribution of your
136
+ derivative works of the Work ("Your Terms") only if (a) Your Terms
137
+ provide that the use limitation in Section 3.3 applies to your
138
+ derivative works, and (b) you identify the specific derivative
139
+ works that are subject to Your Terms. Notwithstanding Your Terms,
140
+ this License (including the redistribution requirements in Section
141
+ 3.1) will continue to apply to the Work itself.
142
+
143
+ 3.3 Use Limitation. The Work and any derivative works thereof only
144
+ may be used or intended for use non-commercially. The Work or
145
+ derivative works thereof may be used or intended for use by Nvidia
146
+ or its affiliates commercially or non-commercially. As used herein,
147
+ "non-commercially" means for research or evaluation purposes only.
148
+
149
+ 3.4 Patent Claims. If you bring or threaten to bring a patent claim
150
+ against any Licensor (including any claim, cross-claim or
151
+ counterclaim in a lawsuit) to enforce any patents that you allege
152
+ are infringed by any Work, then your rights under this License from
153
+ such Licensor (including the grants in Sections 2.1 and 2.2) will
154
+ terminate immediately.
155
+
156
+ 3.5 Trademarks. This License does not grant any rights to use any
157
+ Licensor's or its affiliates' names, logos, or trademarks, except
158
+ as necessary to reproduce the notices described in this License.
159
+
160
+ 3.6 Termination. If you violate any term of this License, then your
161
+ rights under this License (including the grants in Sections 2.1 and
162
+ 2.2) will terminate immediately.
163
+
164
+ 4. Disclaimer of Warranty.
165
+
166
+ THE WORK IS PROVIDED "AS IS" WITHOUT WARRANTIES OR CONDITIONS OF ANY
167
+ KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF
168
+ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR
169
+ NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER
170
+ THIS LICENSE.
171
+
172
+ 5. Limitation of Liability.
173
+
174
+ EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL
175
+ THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE
176
+ SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT,
177
+ INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
178
+ OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK
179
+ (INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION,
180
+ LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER
181
+ COMMERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF
182
+ THE POSSIBILITY OF SUCH DAMAGES.
183
+
184
+ MIT License
185
+
186
+ Copyright (c) 2019 Kim Seonghyeon
187
+
188
+ Permission is hereby granted, free of charge, to any person obtaining a copy
189
+ of this software and associated documentation files (the "Software"), to deal
190
+ in the Software without restriction, including without limitation the rights
191
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
192
+ copies of the Software, and to permit persons to whom the Software is
193
+ furnished to do so, subject to the following conditions:
194
+
195
+ The above copyright notice and this permission notice shall be included in all
196
+ copies or substantial portions of the Software.
197
+
198
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
199
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
200
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
201
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
202
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
203
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
204
+ SOFTWARE.
205
+
206
+
207
+
208
+ Open Source Software licensed under the BSD 3-Clause license:
209
+ ---------------------------------------------
210
+ 1. torchvision
211
+ Copyright (c) Soumith Chintala 2016,
212
+ All rights reserved.
213
+
214
+ 2. torch
215
+ Copyright (c) 2016- Facebook, Inc (Adam Paszke)
216
+ Copyright (c) 2014- Facebook, Inc (Soumith Chintala)
217
+ Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
218
+ Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
219
+ Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
220
+ Copyright (c) 2011-2013 NYU (Clement Farabet)
221
+ Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
222
+ Copyright (c) 2006 Idiap Research Institute (Samy Bengio)
223
+ Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
224
+
225
+
226
+ Terms of the BSD 3-Clause License:
227
+ ---------------------------------------------
228
+ Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
229
+
230
+ 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
231
+
232
+ 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
233
+
234
+ 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
235
+
236
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
237
+
238
+
239
+
240
+ Open Source Software licensed under the BSD 3-Clause License and Other Licenses of the Third-Party Components therein:
241
+ ---------------------------------------------
242
+ 1. numpy
243
+ Copyright (c) 2005-2020, NumPy Developers.
244
+ All rights reserved.
245
+
246
+ A copy of BSD 3-Clause License is included in this file.
247
+
248
+ The NumPy repository and source distributions bundle several libraries that are
249
+ compatibly licensed. We list these here.
250
+
251
+ Name: Numpydoc
252
+ Files: doc/sphinxext/numpydoc/*
253
+ License: BSD-2-Clause
254
+ For details, see doc/sphinxext/LICENSE.txt
255
+
256
+ Name: scipy-sphinx-theme
257
+ Files: doc/scipy-sphinx-theme/*
258
+ License: BSD-3-Clause AND PSF-2.0 AND Apache-2.0
259
+ For details, see doc/scipy-sphinx-theme/LICENSE.txt
260
+
261
+ Name: lapack-lite
262
+ Files: numpy/linalg/lapack_lite/*
263
+ License: BSD-3-Clause
264
+ For details, see numpy/linalg/lapack_lite/LICENSE.txt
265
+
266
+ Name: tempita
267
+ Files: tools/npy_tempita/*
268
+ License: MIT
269
+ For details, see tools/npy_tempita/license.txt
270
+
271
+ Name: dragon4
272
+ Files: numpy/core/src/multiarray/dragon4.c
273
+ License: MIT
274
+ For license text, see numpy/core/src/multiarray/dragon4.c
275
+
276
+
277
+
278
+ Open Source Software licensed under the MIT license:
279
+ ---------------------------------------------
280
+ 1. facexlib
281
+ Copyright (c) 2020 Xintao Wang
282
+
283
+ 2. opencv-python
284
+ Copyright (c) Olli-Pekka Heinisuo
285
+ Please note that only files in cv2 package are used.
286
+
287
+
288
+ Terms of the MIT License:
289
+ ---------------------------------------------
290
+ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
291
+
292
+ The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
293
+
294
+ THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
295
+
296
+
297
+
298
+ Open Source Software licensed under the MIT license and Other Licenses of the Third-Party Components therein:
299
+ ---------------------------------------------
300
+ 1. tqdm
301
+ Copyright (c) 2013 noamraph
302
+
303
+ `tqdm` is a product of collaborative work.
304
+ Unless otherwise stated, all authors (see commit logs) retain copyright
305
+ for their respective work, and release the work under the MIT licence
306
+ (text below).
307
+
308
+ Exceptions or notable authors are listed below
309
+ in reverse chronological order:
310
+
311
+ * files: *
312
+ MPLv2.0 2015-2020 (c) Casper da Costa-Luis
313
+ [casperdcl](https://github.com/casperdcl).
314
+ * files: tqdm/_tqdm.py
315
+ MIT 2016 (c) [PR #96] on behalf of Google Inc.
316
+ * files: tqdm/_tqdm.py setup.py README.rst MANIFEST.in .gitignore
317
+ MIT 2013 (c) Noam Yorav-Raphael, original author.
318
+
319
+ [PR #96]: https://github.com/tqdm/tqdm/pull/96
320
+
321
+
322
+ Mozilla Public Licence (MPL) v. 2.0 - Exhibit A
323
+ -----------------------------------------------
324
+
325
+ This Source Code Form is subject to the terms of the
326
+ Mozilla Public License, v. 2.0.
327
+ If a copy of the MPL was not distributed with this file,
328
+ You can obtain one at https://mozilla.org/MPL/2.0/.
329
+
330
+
331
+ MIT License (MIT)
332
+ -----------------
333
+
334
+ Copyright (c) 2013 noamraph
335
+
336
+ Permission is hereby granted, free of charge, to any person obtaining a copy of
337
+ this software and associated documentation files (the "Software"), to deal in
338
+ the Software without restriction, including without limitation the rights to
339
+ use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
340
+ the Software, and to permit persons to whom the Software is furnished to do so,
341
+ subject to the following conditions:
342
+
343
+ The above copyright notice and this permission notice shall be included in all
344
+ copies or substantial portions of the Software.
345
+
346
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
347
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
348
+ FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
349
+ COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
350
+ IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
351
+ CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
MANIFEST.in ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ include assets/*
2
+ include inputs/*
3
+ include scripts/*.py
4
+ include inference_gfpgan.py
5
+ include VERSION
6
+ include LICENSE
7
+ include requirements.txt
8
+ include gfpgan/weights/README.md
VERSION ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.3.5
app.py CHANGED
@@ -11,83 +11,13 @@ if not os.path.isfile("./_input/imagem-0001.png"):
11
  os.system("ls ./_input")
12
  if 'myVar' not in globals():
13
  myVar=""
14
- os.system("pip install git+https://github.com/TencentARC/GFPGAN.git")
15
-
16
  import cv2
17
- import glob
18
- import numpy as np
19
- from basicsr.utils import imwrite
20
- from gfpgan import GFPGANer
21
- #os.system("pip freeze")
22
- #os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth -P .")
23
- import random
24
-
25
- from PIL import Image
26
- import torch
27
- # torch.hub.download_url_to_file('https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg', 'lincoln.jpg')
28
- # torch.hub.download_url_to_file('https://upload.wikimedia.org/wikipedia/commons/5/50/Albert_Einstein_%28Nobel%29.png', 'einstein.png')
29
- # torch.hub.download_url_to_file('https://upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Thomas_Edison2.jpg/1024px-Thomas_Edison2.jpg', 'edison.jpg')
30
- # torch.hub.download_url_to_file('https://upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Henry_Ford_1888.jpg/1024px-Henry_Ford_1888.jpg', 'Henry.jpg')
31
- # torch.hub.download_url_to_file('https://upload.wikimedia.org/wikipedia/commons/thumb/0/06/Frida_Kahlo%2C_by_Guillermo_Kahlo.jpg/800px-Frida_Kahlo%2C_by_Guillermo_Kahlo.jpg', 'Frida.jpg')
32
-
33
- # set up GFPGAN restorer
34
- bg_upsampler = None
35
- print(f"Is CUDA available: {torch.cuda.is_available()}")
36
- if 'restorer' not in globals():
37
- restorer = GFPGANer(
38
- model_path='GFPGANv1.3.pth',
39
- upscale=2,
40
- arch='clean',
41
- channel_multiplier=2,
42
- bg_upsampler=bg_upsampler)
43
-
44
 
45
- img_list = sorted(glob.glob(os.path.join("./_input", '*')))
46
-
47
- for img_path in img_list:
48
- # read image
49
- img_name = os.path.basename(img_path)
50
- print(f'Processing {img_name} ...')
51
- basename, ext = os.path.splitext(img_name)
52
- input_img = cv2.imread(img_path, cv2.IMREAD_COLOR)
53
-
54
- # restore faces and background if necessary
55
- cropped_faces, restored_faces, restored_img = restorer.enhance(
56
- input_img,
57
- has_aligned='store_true',
58
- only_center_face='store_true',
59
- paste_back=True,
60
- weight=0.5)
61
-
62
- # save faces
63
- for idx, (cropped_face, restored_face) in enumerate(zip(cropped_faces, restored_faces)):
64
- # save cropped face
65
- save_crop_path = os.path.join("_output", 'cropped_faces', f'{basename}_{idx:02d}.png')
66
- imwrite(cropped_face, save_crop_path)
67
- # save restored face
68
- if None is not None:
69
- save_face_name = f'{basename}_{idx:04d}_{args.suffix}.png'
70
- else:
71
- save_face_name = f'{basename}_{idx:04d}.png'
72
- save_restore_path = os.path.join("_output", 'restored_faces', save_face_name)
73
- imwrite(restored_face, save_restore_path)
74
- # save comparison image
75
- cmp_img = np.concatenate((cropped_face, restored_face), axis=1)
76
- imwrite(cmp_img, os.path.join("_output", 'cmp', f'{basename}_{idx:04d}.png'))
77
 
78
- # save restored img
79
- if restored_img is not None:
80
- print('encontrou**************')
81
- if args.ext == 'auto':
82
- extension = ext[1:]
83
- else:
84
- extension = args.ext
85
 
86
- if None is not None:
87
- save_restore_path = os.path.join("_output", 'restored_imgs', f'{basename}_{args.suffix}.{extension}')
88
- else:
89
- save_restore_path = os.path.join("_output", 'restored_imgs', f'{basename}.{extension}')
90
- imwrite(restored_img, save_restore_path)
91
  os.system("ls ./_output")
92
  os.system("echo ----")
93
  os.system("ls ./_output/cmp")
 
11
  os.system("ls ./_input")
12
  if 'myVar' not in globals():
13
  myVar=""
14
+ # os.system("pip install git+https://github.com/TencentARC/GFPGAN.git")
15
+ os.system("python3 inference_gfpgan.py -i _input -o _output -v 1.3 -s 4")
16
  import cv2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ import random
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
 
 
 
 
 
 
 
20
 
 
 
 
 
 
21
  os.system("ls ./_output")
22
  os.system("echo ----")
23
  os.system("ls ./_output/cmp")
app2.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os.path
3
+
4
+ os.system("mkdir _input")
5
+ os.system("mkdir _output")
6
+ os.system("mkdir _outputf")
7
+ os.system("ls")
8
+ if not os.path.isfile("./_input/imagem-0001.png"):
9
+ os.system("ffmpeg -i vivi.mp4 -compression_level 10 -pred mixed -pix_fmt rgb24 -sws_flags +accurate_rnd+full_chroma_int -s 1080x1920 -r 0.12 ./_input/imagem-%4d.png")
10
+
11
+ os.system("ls ./_input")
12
+ if 'myVar' not in globals():
13
+ myVar=""
14
+ os.system("pip install git+https://github.com/TencentARC/GFPGAN.git")
15
+
16
+ import cv2
17
+ import glob
18
+ import numpy as np
19
+ from basicsr.utils import imwrite
20
+ from gfpgan import GFPGANer
21
+ #os.system("pip freeze")
22
+ #os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth -P .")
23
+ import random
24
+
25
+ from PIL import Image
26
+ import torch
27
+ # torch.hub.download_url_to_file('https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg', 'lincoln.jpg')
28
+ # torch.hub.download_url_to_file('https://upload.wikimedia.org/wikipedia/commons/5/50/Albert_Einstein_%28Nobel%29.png', 'einstein.png')
29
+ # torch.hub.download_url_to_file('https://upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Thomas_Edison2.jpg/1024px-Thomas_Edison2.jpg', 'edison.jpg')
30
+ # torch.hub.download_url_to_file('https://upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Henry_Ford_1888.jpg/1024px-Henry_Ford_1888.jpg', 'Henry.jpg')
31
+ # torch.hub.download_url_to_file('https://upload.wikimedia.org/wikipedia/commons/thumb/0/06/Frida_Kahlo%2C_by_Guillermo_Kahlo.jpg/800px-Frida_Kahlo%2C_by_Guillermo_Kahlo.jpg', 'Frida.jpg')
32
+
33
+ # set up GFPGAN restorer
34
+ bg_upsampler = None
35
+ print(f"Is CUDA available: {torch.cuda.is_available()}")
36
+ if 'restorer' not in globals():
37
+ restorer = GFPGANer(
38
+ model_path='GFPGANv1.3.pth',
39
+ upscale=2,
40
+ arch='clean',
41
+ channel_multiplier=2,
42
+ bg_upsampler=bg_upsampler)
43
+
44
+
45
+ img_list = sorted(glob.glob(os.path.join("./_input", '*')))
46
+
47
+ for img_path in img_list:
48
+ # read image
49
+ img_name = os.path.basename(img_path)
50
+ print(f'Processing {img_name} ...')
51
+ basename, ext = os.path.splitext(img_name)
52
+ input_img = cv2.imread(img_path, cv2.IMREAD_COLOR)
53
+
54
+ # restore faces and background if necessary
55
+ cropped_faces, restored_faces, restored_img = restorer.enhance(
56
+ input_img,
57
+ has_aligned='store_true',
58
+ only_center_face='store_true',
59
+ paste_back=True,
60
+ weight=0.5)
61
+
62
+ # save faces
63
+ for idx, (cropped_face, restored_face) in enumerate(zip(cropped_faces, restored_faces)):
64
+ # save cropped face
65
+ save_crop_path = os.path.join("_output", 'cropped_faces', f'{basename}_{idx:02d}.png')
66
+ imwrite(cropped_face, save_crop_path)
67
+ # save restored face
68
+ if None is not None:
69
+ save_face_name = f'{basename}_{idx:04d}_{args.suffix}.png'
70
+ else:
71
+ save_face_name = f'{basename}_{idx:04d}.png'
72
+ save_restore_path = os.path.join("_output", 'restored_faces', save_face_name)
73
+ imwrite(restored_face, save_restore_path)
74
+ # save comparison image
75
+ cmp_img = np.concatenate((cropped_face, restored_face), axis=1)
76
+ imwrite(cmp_img, os.path.join("_output", 'cmp', f'{basename}_{idx:04d}.png'))
77
+
78
+ # save restored img
79
+ if restored_img is not None:
80
+ print('encontrou**************')
81
+ if args.ext == 'auto':
82
+ extension = ext[1:]
83
+ else:
84
+ extension = args.ext
85
+
86
+ if None is not None:
87
+ save_restore_path = os.path.join("_output", 'restored_imgs', f'{basename}_{args.suffix}.{extension}')
88
+ else:
89
+ save_restore_path = os.path.join("_output", 'restored_imgs', f'{basename}.{extension}')
90
+ imwrite(restored_img, save_restore_path)
91
+ os.system("ls ./_output")
92
+ os.system("echo ----")
93
+ os.system("ls ./_output/cmp")
94
+ os.system("echo ----")
95
+ os.system("ls ./_output/restored_imgs")
96
+ os.system("echo ----")
97
+
98
+
99
+
100
+
101
+ def inference():
102
+ random.randint(0, 9)
103
+ input_img = cv2.imread("./_output/cmp/imagem-000"+str(random.randint(1, 4))+"_0000.png" , cv2.IMREAD_COLOR)
104
+ input_img= cv2.cvtColor(input_img,cv2.COLOR_BGR2RGB)
105
+ st.image(input_img)
106
+
107
+ #return Image.fromarray(restored_faces[0][:,:,::-1])
108
+
109
+
110
+ title = "Melhoria de imagens"
111
+
112
+ os.system("ls")
113
+ description = "Sistema para automação。"
114
+
115
+ article = "<p style='text-align: center'><a href='https://huggingface.co/spaces/akhaliq/GFPGAN/' target='_blank'>clone from akhaliq@huggingface with little change</a> | <a href='https://github.com/TencentARC/GFPGAN' target='_blank'>GFPGAN Github Repo</a></p><center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center>"
116
+ st.button('Comparacao',on_click=inference)
117
+
118
+
cog_predict.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa
2
+ # This file is used for deploying replicate models
3
+ # running: cog predict -i img=@inputs/whole_imgs/10045.png -i version='v1.4' -i scale=2
4
+ # push: cog push r8.im/tencentarc/gfpgan
5
+ # push (backup): cog push r8.im/xinntao/gfpgan
6
+
7
+ import os
8
+
9
+ os.system('python setup.py develop')
10
+ os.system('pip install realesrgan')
11
+
12
+ import cv2
13
+ import shutil
14
+ import tempfile
15
+ import torch
16
+ from basicsr.archs.srvgg_arch import SRVGGNetCompact
17
+
18
+ from gfpgan import GFPGANer
19
+
20
+ try:
21
+ from cog import BasePredictor, Input, Path
22
+ from realesrgan.utils import RealESRGANer
23
+ except Exception:
24
+ print('please install cog and realesrgan package')
25
+
26
+
27
+ class Predictor(BasePredictor):
28
+
29
+ def setup(self):
30
+ os.makedirs('output', exist_ok=True)
31
+ # download weights
32
+ if not os.path.exists('gfpgan/weights/realesr-general-x4v3.pth'):
33
+ os.system(
34
+ 'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P ./gfpgan/weights'
35
+ )
36
+ if not os.path.exists('gfpgan/weights/GFPGANv1.2.pth'):
37
+ os.system(
38
+ 'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P ./gfpgan/weights')
39
+ if not os.path.exists('gfpgan/weights/GFPGANv1.3.pth'):
40
+ os.system(
41
+ 'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P ./gfpgan/weights')
42
+ if not os.path.exists('gfpgan/weights/GFPGANv1.4.pth'):
43
+ os.system(
44
+ 'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P ./gfpgan/weights')
45
+
46
+ # background enhancer with RealESRGAN
47
+ model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
48
+ model_path = 'gfpgan/weights/realesr-general-x4v3.pth'
49
+ half = True if torch.cuda.is_available() else False
50
+ self.upsampler = RealESRGANer(
51
+ scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
52
+
53
+ # Use GFPGAN for face enhancement
54
+ self.face_enhancer = GFPGANer(
55
+ model_path='gfpgan/weights/GFPGANv1.4.pth',
56
+ upscale=2,
57
+ arch='clean',
58
+ channel_multiplier=2,
59
+ bg_upsampler=self.upsampler)
60
+ self.current_version = 'v1.4'
61
+
62
+ def predict(
63
+ self,
64
+ img: Path = Input(description='Input'),
65
+ version: str = Input(
66
+ description='GFPGAN version. v1.3: better quality. v1.4: more details and better identity.',
67
+ choices=['v1.2', 'v1.3', 'v1.4'],
68
+ default='v1.4'),
69
+ scale: float = Input(description='Rescaling factor', default=2)
70
+ ) -> Path:
71
+ print(img, version, scale)
72
+ try:
73
+ extension = os.path.splitext(os.path.basename(str(img)))[1]
74
+ img = cv2.imread(str(img), cv2.IMREAD_UNCHANGED)
75
+ if len(img.shape) == 3 and img.shape[2] == 4:
76
+ img_mode = 'RGBA'
77
+ elif len(img.shape) == 2:
78
+ img_mode = None
79
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
80
+ else:
81
+ img_mode = None
82
+
83
+ h, w = img.shape[0:2]
84
+ if h < 300:
85
+ img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
86
+
87
+ if self.current_version != version:
88
+ if version == 'v1.2':
89
+ self.face_enhancer = GFPGANer(
90
+ model_path='gfpgan/weights/GFPGANv1.2.pth',
91
+ upscale=2,
92
+ arch='clean',
93
+ channel_multiplier=2,
94
+ bg_upsampler=self.upsampler)
95
+ self.current_version = 'v1.2'
96
+ elif version == 'v1.3':
97
+ self.face_enhancer = GFPGANer(
98
+ model_path='gfpgan/weights/GFPGANv1.3.pth',
99
+ upscale=2,
100
+ arch='clean',
101
+ channel_multiplier=2,
102
+ bg_upsampler=self.upsampler)
103
+ self.current_version = 'v1.3'
104
+ elif version == 'v1.4':
105
+ self.face_enhancer = GFPGANer(
106
+ model_path='gfpgan/weights/GFPGANv1.4.pth',
107
+ upscale=2,
108
+ arch='clean',
109
+ channel_multiplier=2,
110
+ bg_upsampler=self.upsampler)
111
+ self.current_version = 'v1.4'
112
+
113
+ try:
114
+ _, _, output = self.face_enhancer.enhance(
115
+ img, has_aligned=False, only_center_face=False, paste_back=True)
116
+ except RuntimeError as error:
117
+ print('Error', error)
118
+ else:
119
+ extension = 'png'
120
+
121
+ try:
122
+ if scale != 2:
123
+ interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
124
+ h, w = img.shape[0:2]
125
+ output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
126
+ except Exception as error:
127
+ print('wrong scale input.', error)
128
+
129
+ if img_mode == 'RGBA': # RGBA images should be saved in png format
130
+ extension = 'png'
131
+ # save_path = f'output/out.{extension}'
132
+ # cv2.imwrite(save_path, output)
133
+ out_path = Path(tempfile.mkdtemp()) / f'out.{extension}'
134
+ cv2.imwrite(str(out_path), output)
135
+ except Exception as error:
136
+ print('global exception: ', error)
137
+ finally:
138
+ clean_folder('output')
139
+ return out_path
140
+
141
+
142
+ def clean_folder(folder):
143
+ for filename in os.listdir(folder):
144
+ file_path = os.path.join(folder, filename)
145
+ try:
146
+ if os.path.isfile(file_path) or os.path.islink(file_path):
147
+ os.unlink(file_path)
148
+ elif os.path.isdir(file_path):
149
+ shutil.rmtree(file_path)
150
+ except Exception as e:
151
+ print(f'Failed to delete {file_path}. Reason: {e}')
experiments/pretrained_models/GFPGANCleanv1-NoCE-C2_original.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b37d44344341835bb4bc473f867cb87710ee7543f051b5f5c0567e218089e4eb
3
+ size 697369657
experiments/pretrained_models/GFPGANCleanv1-NoCE-C2_original_net_d.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a295e829200428c24567036d30feead04126d7f1da346824f0ca086ea6338e0b
3
+ size 115948978
experiments/pretrained_models/GFPGANv1.3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c953a88f2727c85c3d9ae72e2bd4846bbaf59fe6972ad94130e23e7017524a70
3
+ size 348632874
experiments/pretrained_models/GFPGANv1.4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2cd4703ab14f4d01fd1383a8a8b266f9a5833dacee8e6a79d3bf21a1b6be5ad
3
+ size 348632874
experiments/pretrained_models/GFPGANv1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6db3a33dd00dd427b8a70a7e3c6244a5bcccb818736f4861ce1d609024a991de
3
+ size 615378983
experiments/pretrained_models/GFPGANv1_net_d_left_eye.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5812f57ca2613661c1f16de63656a1ba7ddb47e326fa13706836cadfff4d0e5
3
+ size 4445348
experiments/pretrained_models/GFPGANv1_net_d_right_eye.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29f200b9e144944ffbf43369a1283514032ffed693181fc0cc9626e7a564ef38
3
+ size 4445348
experiments/pretrained_models/README.md ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ # Pre-trained Models and Other Data
2
+
3
+ Download pre-trained models and other data. Put them in this folder.
4
+
5
+ 1. [Pretrained StyleGAN2 model: StyleGAN2_512_Cmul1_FFHQ_B12G4_scratch_800k.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/StyleGAN2_512_Cmul1_FFHQ_B12G4_scratch_800k.pth)
6
+ 1. [Component locations of FFHQ: FFHQ_eye_mouth_landmarks_512.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/FFHQ_eye_mouth_landmarks_512.pth)
7
+ 1. [A simple ArcFace model: arcface_resnet18.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/arcface_resnet18.pth)
gfpgan/__init__.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ # flake8: noqa
2
+ from .archs import *
3
+ from .data import *
4
+ from .models import *
5
+ from .utils import *
6
+
7
+ # from .version import *
gfpgan/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (222 Bytes). View file
 
gfpgan/__pycache__/__init__.cpython-37.pyc ADDED
Binary file (237 Bytes). View file
 
gfpgan/__pycache__/utils.cpython-310.pyc ADDED
Binary file (4.09 kB). View file
 
gfpgan/__pycache__/utils.cpython-37.pyc ADDED
Binary file (4.1 kB). View file
 
gfpgan/archs/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ from basicsr.utils import scandir
3
+ from os import path as osp
4
+
5
+ # automatically scan and import arch modules for registry
6
+ # scan all the files that end with '_arch.py' under the archs folder
7
+ arch_folder = osp.dirname(osp.abspath(__file__))
8
+ arch_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(arch_folder) if v.endswith('_arch.py')]
9
+ # import all the arch modules
10
+ _arch_modules = [importlib.import_module(f'gfpgan.archs.{file_name}') for file_name in arch_filenames]
gfpgan/archs/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (707 Bytes). View file
 
gfpgan/archs/__pycache__/__init__.cpython-37.pyc ADDED
Binary file (714 Bytes). View file
 
gfpgan/archs/__pycache__/arcface_arch.cpython-310.pyc ADDED
Binary file (7.36 kB). View file
 
gfpgan/archs/__pycache__/arcface_arch.cpython-37.pyc ADDED
Binary file (7.52 kB). View file
 
gfpgan/archs/__pycache__/gfpgan_bilinear_arch.cpython-310.pyc ADDED
Binary file (9.17 kB). View file
 
gfpgan/archs/__pycache__/gfpgan_bilinear_arch.cpython-37.pyc ADDED
Binary file (9.16 kB). View file
 
gfpgan/archs/__pycache__/gfpganv1_arch.cpython-310.pyc ADDED
Binary file (12.9 kB). View file
 
gfpgan/archs/__pycache__/gfpganv1_arch.cpython-37.pyc ADDED
Binary file (13 kB). View file
 
gfpgan/archs/__pycache__/gfpganv1_clean_arch.cpython-310.pyc ADDED
Binary file (9.59 kB). View file
 
gfpgan/archs/__pycache__/gfpganv1_clean_arch.cpython-37.pyc ADDED
Binary file (9.63 kB). View file
 
gfpgan/archs/__pycache__/stylegan2_bilinear_arch.cpython-310.pyc ADDED
Binary file (18 kB). View file
 
gfpgan/archs/__pycache__/stylegan2_bilinear_arch.cpython-37.pyc ADDED
Binary file (18.2 kB). View file
 
gfpgan/archs/__pycache__/stylegan2_clean_arch.cpython-310.pyc ADDED
Binary file (11.8 kB). View file
 
gfpgan/archs/__pycache__/stylegan2_clean_arch.cpython-37.pyc ADDED
Binary file (11.9 kB). View file
 
gfpgan/archs/arcface_arch.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ from basicsr.utils.registry import ARCH_REGISTRY
3
+
4
+
5
+ def conv3x3(inplanes, outplanes, stride=1):
6
+ """A simple wrapper for 3x3 convolution with padding.
7
+
8
+ Args:
9
+ inplanes (int): Channel number of inputs.
10
+ outplanes (int): Channel number of outputs.
11
+ stride (int): Stride in convolution. Default: 1.
12
+ """
13
+ return nn.Conv2d(inplanes, outplanes, kernel_size=3, stride=stride, padding=1, bias=False)
14
+
15
+
16
+ class BasicBlock(nn.Module):
17
+ """Basic residual block used in the ResNetArcFace architecture.
18
+
19
+ Args:
20
+ inplanes (int): Channel number of inputs.
21
+ planes (int): Channel number of outputs.
22
+ stride (int): Stride in convolution. Default: 1.
23
+ downsample (nn.Module): The downsample module. Default: None.
24
+ """
25
+ expansion = 1 # output channel expansion ratio
26
+
27
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
28
+ super(BasicBlock, self).__init__()
29
+ self.conv1 = conv3x3(inplanes, planes, stride)
30
+ self.bn1 = nn.BatchNorm2d(planes)
31
+ self.relu = nn.ReLU(inplace=True)
32
+ self.conv2 = conv3x3(planes, planes)
33
+ self.bn2 = nn.BatchNorm2d(planes)
34
+ self.downsample = downsample
35
+ self.stride = stride
36
+
37
+ def forward(self, x):
38
+ residual = x
39
+
40
+ out = self.conv1(x)
41
+ out = self.bn1(out)
42
+ out = self.relu(out)
43
+
44
+ out = self.conv2(out)
45
+ out = self.bn2(out)
46
+
47
+ if self.downsample is not None:
48
+ residual = self.downsample(x)
49
+
50
+ out += residual
51
+ out = self.relu(out)
52
+
53
+ return out
54
+
55
+
56
+ class IRBlock(nn.Module):
57
+ """Improved residual block (IR Block) used in the ResNetArcFace architecture.
58
+
59
+ Args:
60
+ inplanes (int): Channel number of inputs.
61
+ planes (int): Channel number of outputs.
62
+ stride (int): Stride in convolution. Default: 1.
63
+ downsample (nn.Module): The downsample module. Default: None.
64
+ use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True.
65
+ """
66
+ expansion = 1 # output channel expansion ratio
67
+
68
+ def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True):
69
+ super(IRBlock, self).__init__()
70
+ self.bn0 = nn.BatchNorm2d(inplanes)
71
+ self.conv1 = conv3x3(inplanes, inplanes)
72
+ self.bn1 = nn.BatchNorm2d(inplanes)
73
+ self.prelu = nn.PReLU()
74
+ self.conv2 = conv3x3(inplanes, planes, stride)
75
+ self.bn2 = nn.BatchNorm2d(planes)
76
+ self.downsample = downsample
77
+ self.stride = stride
78
+ self.use_se = use_se
79
+ if self.use_se:
80
+ self.se = SEBlock(planes)
81
+
82
+ def forward(self, x):
83
+ residual = x
84
+ out = self.bn0(x)
85
+ out = self.conv1(out)
86
+ out = self.bn1(out)
87
+ out = self.prelu(out)
88
+
89
+ out = self.conv2(out)
90
+ out = self.bn2(out)
91
+ if self.use_se:
92
+ out = self.se(out)
93
+
94
+ if self.downsample is not None:
95
+ residual = self.downsample(x)
96
+
97
+ out += residual
98
+ out = self.prelu(out)
99
+
100
+ return out
101
+
102
+
103
+ class Bottleneck(nn.Module):
104
+ """Bottleneck block used in the ResNetArcFace architecture.
105
+
106
+ Args:
107
+ inplanes (int): Channel number of inputs.
108
+ planes (int): Channel number of outputs.
109
+ stride (int): Stride in convolution. Default: 1.
110
+ downsample (nn.Module): The downsample module. Default: None.
111
+ """
112
+ expansion = 4 # output channel expansion ratio
113
+
114
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
115
+ super(Bottleneck, self).__init__()
116
+ self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
117
+ self.bn1 = nn.BatchNorm2d(planes)
118
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
119
+ self.bn2 = nn.BatchNorm2d(planes)
120
+ self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
121
+ self.bn3 = nn.BatchNorm2d(planes * self.expansion)
122
+ self.relu = nn.ReLU(inplace=True)
123
+ self.downsample = downsample
124
+ self.stride = stride
125
+
126
+ def forward(self, x):
127
+ residual = x
128
+
129
+ out = self.conv1(x)
130
+ out = self.bn1(out)
131
+ out = self.relu(out)
132
+
133
+ out = self.conv2(out)
134
+ out = self.bn2(out)
135
+ out = self.relu(out)
136
+
137
+ out = self.conv3(out)
138
+ out = self.bn3(out)
139
+
140
+ if self.downsample is not None:
141
+ residual = self.downsample(x)
142
+
143
+ out += residual
144
+ out = self.relu(out)
145
+
146
+ return out
147
+
148
+
149
+ class SEBlock(nn.Module):
150
+ """The squeeze-and-excitation block (SEBlock) used in the IRBlock.
151
+
152
+ Args:
153
+ channel (int): Channel number of inputs.
154
+ reduction (int): Channel reduction ration. Default: 16.
155
+ """
156
+
157
+ def __init__(self, channel, reduction=16):
158
+ super(SEBlock, self).__init__()
159
+ self.avg_pool = nn.AdaptiveAvgPool2d(1) # pool to 1x1 without spatial information
160
+ self.fc = nn.Sequential(
161
+ nn.Linear(channel, channel // reduction), nn.PReLU(), nn.Linear(channel // reduction, channel),
162
+ nn.Sigmoid())
163
+
164
+ def forward(self, x):
165
+ b, c, _, _ = x.size()
166
+ y = self.avg_pool(x).view(b, c)
167
+ y = self.fc(y).view(b, c, 1, 1)
168
+ return x * y
169
+
170
+
171
+ @ARCH_REGISTRY.register()
172
+ class ResNetArcFace(nn.Module):
173
+ """ArcFace with ResNet architectures.
174
+
175
+ Ref: ArcFace: Additive Angular Margin Loss for Deep Face Recognition.
176
+
177
+ Args:
178
+ block (str): Block used in the ArcFace architecture.
179
+ layers (tuple(int)): Block numbers in each layer.
180
+ use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True.
181
+ """
182
+
183
+ def __init__(self, block, layers, use_se=True):
184
+ if block == 'IRBlock':
185
+ block = IRBlock
186
+ self.inplanes = 64
187
+ self.use_se = use_se
188
+ super(ResNetArcFace, self).__init__()
189
+
190
+ self.conv1 = nn.Conv2d(1, 64, kernel_size=3, padding=1, bias=False)
191
+ self.bn1 = nn.BatchNorm2d(64)
192
+ self.prelu = nn.PReLU()
193
+ self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
194
+ self.layer1 = self._make_layer(block, 64, layers[0])
195
+ self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
196
+ self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
197
+ self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
198
+ self.bn4 = nn.BatchNorm2d(512)
199
+ self.dropout = nn.Dropout()
200
+ self.fc5 = nn.Linear(512 * 8 * 8, 512)
201
+ self.bn5 = nn.BatchNorm1d(512)
202
+
203
+ # initialization
204
+ for m in self.modules():
205
+ if isinstance(m, nn.Conv2d):
206
+ nn.init.xavier_normal_(m.weight)
207
+ elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
208
+ nn.init.constant_(m.weight, 1)
209
+ nn.init.constant_(m.bias, 0)
210
+ elif isinstance(m, nn.Linear):
211
+ nn.init.xavier_normal_(m.weight)
212
+ nn.init.constant_(m.bias, 0)
213
+
214
+ def _make_layer(self, block, planes, num_blocks, stride=1):
215
+ downsample = None
216
+ if stride != 1 or self.inplanes != planes * block.expansion:
217
+ downsample = nn.Sequential(
218
+ nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
219
+ nn.BatchNorm2d(planes * block.expansion),
220
+ )
221
+ layers = []
222
+ layers.append(block(self.inplanes, planes, stride, downsample, use_se=self.use_se))
223
+ self.inplanes = planes
224
+ for _ in range(1, num_blocks):
225
+ layers.append(block(self.inplanes, planes, use_se=self.use_se))
226
+
227
+ return nn.Sequential(*layers)
228
+
229
+ def forward(self, x):
230
+ x = self.conv1(x)
231
+ x = self.bn1(x)
232
+ x = self.prelu(x)
233
+ x = self.maxpool(x)
234
+
235
+ x = self.layer1(x)
236
+ x = self.layer2(x)
237
+ x = self.layer3(x)
238
+ x = self.layer4(x)
239
+ x = self.bn4(x)
240
+ x = self.dropout(x)
241
+ x = x.view(x.size(0), -1)
242
+ x = self.fc5(x)
243
+ x = self.bn5(x)
244
+
245
+ return x
gfpgan/archs/gfpgan_bilinear_arch.py ADDED
@@ -0,0 +1,312 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import random
3
+ import torch
4
+ from basicsr.utils.registry import ARCH_REGISTRY
5
+ from torch import nn
6
+
7
+ from .gfpganv1_arch import ResUpBlock
8
+ from .stylegan2_bilinear_arch import (ConvLayer, EqualConv2d, EqualLinear, ResBlock, ScaledLeakyReLU,
9
+ StyleGAN2GeneratorBilinear)
10
+
11
+
12
+ class StyleGAN2GeneratorBilinearSFT(StyleGAN2GeneratorBilinear):
13
+ """StyleGAN2 Generator with SFT modulation (Spatial Feature Transform).
14
+
15
+ It is the bilinear version. It does not use the complicated UpFirDnSmooth function that is not friendly for
16
+ deployment. It can be easily converted to the clean version: StyleGAN2GeneratorCSFT.
17
+
18
+ Args:
19
+ out_size (int): The spatial size of outputs.
20
+ num_style_feat (int): Channel number of style features. Default: 512.
21
+ num_mlp (int): Layer number of MLP style layers. Default: 8.
22
+ channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
23
+ lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
24
+ narrow (float): The narrow ratio for channels. Default: 1.
25
+ sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
26
+ """
27
+
28
+ def __init__(self,
29
+ out_size,
30
+ num_style_feat=512,
31
+ num_mlp=8,
32
+ channel_multiplier=2,
33
+ lr_mlp=0.01,
34
+ narrow=1,
35
+ sft_half=False):
36
+ super(StyleGAN2GeneratorBilinearSFT, self).__init__(
37
+ out_size,
38
+ num_style_feat=num_style_feat,
39
+ num_mlp=num_mlp,
40
+ channel_multiplier=channel_multiplier,
41
+ lr_mlp=lr_mlp,
42
+ narrow=narrow)
43
+ self.sft_half = sft_half
44
+
45
+ def forward(self,
46
+ styles,
47
+ conditions,
48
+ input_is_latent=False,
49
+ noise=None,
50
+ randomize_noise=True,
51
+ truncation=1,
52
+ truncation_latent=None,
53
+ inject_index=None,
54
+ return_latents=False):
55
+ """Forward function for StyleGAN2GeneratorBilinearSFT.
56
+
57
+ Args:
58
+ styles (list[Tensor]): Sample codes of styles.
59
+ conditions (list[Tensor]): SFT conditions to generators.
60
+ input_is_latent (bool): Whether input is latent style. Default: False.
61
+ noise (Tensor | None): Input noise or None. Default: None.
62
+ randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
63
+ truncation (float): The truncation ratio. Default: 1.
64
+ truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
65
+ inject_index (int | None): The injection index for mixing noise. Default: None.
66
+ return_latents (bool): Whether to return style latents. Default: False.
67
+ """
68
+ # style codes -> latents with Style MLP layer
69
+ if not input_is_latent:
70
+ styles = [self.style_mlp(s) for s in styles]
71
+ # noises
72
+ if noise is None:
73
+ if randomize_noise:
74
+ noise = [None] * self.num_layers # for each style conv layer
75
+ else: # use the stored noise
76
+ noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
77
+ # style truncation
78
+ if truncation < 1:
79
+ style_truncation = []
80
+ for style in styles:
81
+ style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
82
+ styles = style_truncation
83
+ # get style latents with injection
84
+ if len(styles) == 1:
85
+ inject_index = self.num_latent
86
+
87
+ if styles[0].ndim < 3:
88
+ # repeat latent code for all the layers
89
+ latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
90
+ else: # used for encoder with different latent code for each layer
91
+ latent = styles[0]
92
+ elif len(styles) == 2: # mixing noises
93
+ if inject_index is None:
94
+ inject_index = random.randint(1, self.num_latent - 1)
95
+ latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
96
+ latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
97
+ latent = torch.cat([latent1, latent2], 1)
98
+
99
+ # main generation
100
+ out = self.constant_input(latent.shape[0])
101
+ out = self.style_conv1(out, latent[:, 0], noise=noise[0])
102
+ skip = self.to_rgb1(out, latent[:, 1])
103
+
104
+ i = 1
105
+ for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
106
+ noise[2::2], self.to_rgbs):
107
+ out = conv1(out, latent[:, i], noise=noise1)
108
+
109
+ # the conditions may have fewer levels
110
+ if i < len(conditions):
111
+ # SFT part to combine the conditions
112
+ if self.sft_half: # only apply SFT to half of the channels
113
+ out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1)
114
+ out_sft = out_sft * conditions[i - 1] + conditions[i]
115
+ out = torch.cat([out_same, out_sft], dim=1)
116
+ else: # apply SFT to all the channels
117
+ out = out * conditions[i - 1] + conditions[i]
118
+
119
+ out = conv2(out, latent[:, i + 1], noise=noise2)
120
+ skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space
121
+ i += 2
122
+
123
+ image = skip
124
+
125
+ if return_latents:
126
+ return image, latent
127
+ else:
128
+ return image, None
129
+
130
+
131
+ @ARCH_REGISTRY.register()
132
+ class GFPGANBilinear(nn.Module):
133
+ """The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT.
134
+
135
+ It is the bilinear version and it does not use the complicated UpFirDnSmooth function that is not friendly for
136
+ deployment. It can be easily converted to the clean version: GFPGANv1Clean.
137
+
138
+
139
+ Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior.
140
+
141
+ Args:
142
+ out_size (int): The spatial size of outputs.
143
+ num_style_feat (int): Channel number of style features. Default: 512.
144
+ channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
145
+ decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None.
146
+ fix_decoder (bool): Whether to fix the decoder. Default: True.
147
+
148
+ num_mlp (int): Layer number of MLP style layers. Default: 8.
149
+ lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
150
+ input_is_latent (bool): Whether input is latent style. Default: False.
151
+ different_w (bool): Whether to use different latent w for different layers. Default: False.
152
+ narrow (float): The narrow ratio for channels. Default: 1.
153
+ sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
154
+ """
155
+
156
+ def __init__(
157
+ self,
158
+ out_size,
159
+ num_style_feat=512,
160
+ channel_multiplier=1,
161
+ decoder_load_path=None,
162
+ fix_decoder=True,
163
+ # for stylegan decoder
164
+ num_mlp=8,
165
+ lr_mlp=0.01,
166
+ input_is_latent=False,
167
+ different_w=False,
168
+ narrow=1,
169
+ sft_half=False):
170
+
171
+ super(GFPGANBilinear, self).__init__()
172
+ self.input_is_latent = input_is_latent
173
+ self.different_w = different_w
174
+ self.num_style_feat = num_style_feat
175
+
176
+ unet_narrow = narrow * 0.5 # by default, use a half of input channels
177
+ channels = {
178
+ '4': int(512 * unet_narrow),
179
+ '8': int(512 * unet_narrow),
180
+ '16': int(512 * unet_narrow),
181
+ '32': int(512 * unet_narrow),
182
+ '64': int(256 * channel_multiplier * unet_narrow),
183
+ '128': int(128 * channel_multiplier * unet_narrow),
184
+ '256': int(64 * channel_multiplier * unet_narrow),
185
+ '512': int(32 * channel_multiplier * unet_narrow),
186
+ '1024': int(16 * channel_multiplier * unet_narrow)
187
+ }
188
+
189
+ self.log_size = int(math.log(out_size, 2))
190
+ first_out_size = 2**(int(math.log(out_size, 2)))
191
+
192
+ self.conv_body_first = ConvLayer(3, channels[f'{first_out_size}'], 1, bias=True, activate=True)
193
+
194
+ # downsample
195
+ in_channels = channels[f'{first_out_size}']
196
+ self.conv_body_down = nn.ModuleList()
197
+ for i in range(self.log_size, 2, -1):
198
+ out_channels = channels[f'{2**(i - 1)}']
199
+ self.conv_body_down.append(ResBlock(in_channels, out_channels))
200
+ in_channels = out_channels
201
+
202
+ self.final_conv = ConvLayer(in_channels, channels['4'], 3, bias=True, activate=True)
203
+
204
+ # upsample
205
+ in_channels = channels['4']
206
+ self.conv_body_up = nn.ModuleList()
207
+ for i in range(3, self.log_size + 1):
208
+ out_channels = channels[f'{2**i}']
209
+ self.conv_body_up.append(ResUpBlock(in_channels, out_channels))
210
+ in_channels = out_channels
211
+
212
+ # to RGB
213
+ self.toRGB = nn.ModuleList()
214
+ for i in range(3, self.log_size + 1):
215
+ self.toRGB.append(EqualConv2d(channels[f'{2**i}'], 3, 1, stride=1, padding=0, bias=True, bias_init_val=0))
216
+
217
+ if different_w:
218
+ linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat
219
+ else:
220
+ linear_out_channel = num_style_feat
221
+
222
+ self.final_linear = EqualLinear(
223
+ channels['4'] * 4 * 4, linear_out_channel, bias=True, bias_init_val=0, lr_mul=1, activation=None)
224
+
225
+ # the decoder: stylegan2 generator with SFT modulations
226
+ self.stylegan_decoder = StyleGAN2GeneratorBilinearSFT(
227
+ out_size=out_size,
228
+ num_style_feat=num_style_feat,
229
+ num_mlp=num_mlp,
230
+ channel_multiplier=channel_multiplier,
231
+ lr_mlp=lr_mlp,
232
+ narrow=narrow,
233
+ sft_half=sft_half)
234
+
235
+ # load pre-trained stylegan2 model if necessary
236
+ if decoder_load_path:
237
+ self.stylegan_decoder.load_state_dict(
238
+ torch.load(decoder_load_path, map_location=lambda storage, loc: storage)['params_ema'])
239
+ # fix decoder without updating params
240
+ if fix_decoder:
241
+ for _, param in self.stylegan_decoder.named_parameters():
242
+ param.requires_grad = False
243
+
244
+ # for SFT modulations (scale and shift)
245
+ self.condition_scale = nn.ModuleList()
246
+ self.condition_shift = nn.ModuleList()
247
+ for i in range(3, self.log_size + 1):
248
+ out_channels = channels[f'{2**i}']
249
+ if sft_half:
250
+ sft_out_channels = out_channels
251
+ else:
252
+ sft_out_channels = out_channels * 2
253
+ self.condition_scale.append(
254
+ nn.Sequential(
255
+ EqualConv2d(out_channels, out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=0),
256
+ ScaledLeakyReLU(0.2),
257
+ EqualConv2d(out_channels, sft_out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=1)))
258
+ self.condition_shift.append(
259
+ nn.Sequential(
260
+ EqualConv2d(out_channels, out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=0),
261
+ ScaledLeakyReLU(0.2),
262
+ EqualConv2d(out_channels, sft_out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=0)))
263
+
264
+ def forward(self, x, return_latents=False, return_rgb=True, randomize_noise=True):
265
+ """Forward function for GFPGANBilinear.
266
+
267
+ Args:
268
+ x (Tensor): Input images.
269
+ return_latents (bool): Whether to return style latents. Default: False.
270
+ return_rgb (bool): Whether return intermediate rgb images. Default: True.
271
+ randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
272
+ """
273
+ conditions = []
274
+ unet_skips = []
275
+ out_rgbs = []
276
+
277
+ # encoder
278
+ feat = self.conv_body_first(x)
279
+ for i in range(self.log_size - 2):
280
+ feat = self.conv_body_down[i](feat)
281
+ unet_skips.insert(0, feat)
282
+
283
+ feat = self.final_conv(feat)
284
+
285
+ # style code
286
+ style_code = self.final_linear(feat.view(feat.size(0), -1))
287
+ if self.different_w:
288
+ style_code = style_code.view(style_code.size(0), -1, self.num_style_feat)
289
+
290
+ # decode
291
+ for i in range(self.log_size - 2):
292
+ # add unet skip
293
+ feat = feat + unet_skips[i]
294
+ # ResUpLayer
295
+ feat = self.conv_body_up[i](feat)
296
+ # generate scale and shift for SFT layers
297
+ scale = self.condition_scale[i](feat)
298
+ conditions.append(scale.clone())
299
+ shift = self.condition_shift[i](feat)
300
+ conditions.append(shift.clone())
301
+ # generate rgb images
302
+ if return_rgb:
303
+ out_rgbs.append(self.toRGB[i](feat))
304
+
305
+ # decoder
306
+ image, _ = self.stylegan_decoder([style_code],
307
+ conditions,
308
+ return_latents=return_latents,
309
+ input_is_latent=self.input_is_latent,
310
+ randomize_noise=randomize_noise)
311
+
312
+ return image, out_rgbs
gfpgan/archs/gfpganv1_arch.py ADDED
@@ -0,0 +1,439 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import random
3
+ import torch
4
+ from basicsr.archs.stylegan2_arch import (ConvLayer, EqualConv2d, EqualLinear, ResBlock, ScaledLeakyReLU,
5
+ StyleGAN2Generator)
6
+ from basicsr.ops.fused_act import FusedLeakyReLU
7
+ from basicsr.utils.registry import ARCH_REGISTRY
8
+ from torch import nn
9
+ from torch.nn import functional as F
10
+
11
+
12
+ class StyleGAN2GeneratorSFT(StyleGAN2Generator):
13
+ """StyleGAN2 Generator with SFT modulation (Spatial Feature Transform).
14
+
15
+ Args:
16
+ out_size (int): The spatial size of outputs.
17
+ num_style_feat (int): Channel number of style features. Default: 512.
18
+ num_mlp (int): Layer number of MLP style layers. Default: 8.
19
+ channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
20
+ resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. A cross production will be
21
+ applied to extent 1D resample kernel to 2D resample kernel. Default: (1, 3, 3, 1).
22
+ lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
23
+ narrow (float): The narrow ratio for channels. Default: 1.
24
+ sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
25
+ """
26
+
27
+ def __init__(self,
28
+ out_size,
29
+ num_style_feat=512,
30
+ num_mlp=8,
31
+ channel_multiplier=2,
32
+ resample_kernel=(1, 3, 3, 1),
33
+ lr_mlp=0.01,
34
+ narrow=1,
35
+ sft_half=False):
36
+ super(StyleGAN2GeneratorSFT, self).__init__(
37
+ out_size,
38
+ num_style_feat=num_style_feat,
39
+ num_mlp=num_mlp,
40
+ channel_multiplier=channel_multiplier,
41
+ resample_kernel=resample_kernel,
42
+ lr_mlp=lr_mlp,
43
+ narrow=narrow)
44
+ self.sft_half = sft_half
45
+
46
+ def forward(self,
47
+ styles,
48
+ conditions,
49
+ input_is_latent=False,
50
+ noise=None,
51
+ randomize_noise=True,
52
+ truncation=1,
53
+ truncation_latent=None,
54
+ inject_index=None,
55
+ return_latents=False):
56
+ """Forward function for StyleGAN2GeneratorSFT.
57
+
58
+ Args:
59
+ styles (list[Tensor]): Sample codes of styles.
60
+ conditions (list[Tensor]): SFT conditions to generators.
61
+ input_is_latent (bool): Whether input is latent style. Default: False.
62
+ noise (Tensor | None): Input noise or None. Default: None.
63
+ randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
64
+ truncation (float): The truncation ratio. Default: 1.
65
+ truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
66
+ inject_index (int | None): The injection index for mixing noise. Default: None.
67
+ return_latents (bool): Whether to return style latents. Default: False.
68
+ """
69
+ # style codes -> latents with Style MLP layer
70
+ if not input_is_latent:
71
+ styles = [self.style_mlp(s) for s in styles]
72
+ # noises
73
+ if noise is None:
74
+ if randomize_noise:
75
+ noise = [None] * self.num_layers # for each style conv layer
76
+ else: # use the stored noise
77
+ noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
78
+ # style truncation
79
+ if truncation < 1:
80
+ style_truncation = []
81
+ for style in styles:
82
+ style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
83
+ styles = style_truncation
84
+ # get style latents with injection
85
+ if len(styles) == 1:
86
+ inject_index = self.num_latent
87
+
88
+ if styles[0].ndim < 3:
89
+ # repeat latent code for all the layers
90
+ latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
91
+ else: # used for encoder with different latent code for each layer
92
+ latent = styles[0]
93
+ elif len(styles) == 2: # mixing noises
94
+ if inject_index is None:
95
+ inject_index = random.randint(1, self.num_latent - 1)
96
+ latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
97
+ latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
98
+ latent = torch.cat([latent1, latent2], 1)
99
+
100
+ # main generation
101
+ out = self.constant_input(latent.shape[0])
102
+ out = self.style_conv1(out, latent[:, 0], noise=noise[0])
103
+ skip = self.to_rgb1(out, latent[:, 1])
104
+
105
+ i = 1
106
+ for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
107
+ noise[2::2], self.to_rgbs):
108
+ out = conv1(out, latent[:, i], noise=noise1)
109
+
110
+ # the conditions may have fewer levels
111
+ if i < len(conditions):
112
+ # SFT part to combine the conditions
113
+ if self.sft_half: # only apply SFT to half of the channels
114
+ out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1)
115
+ out_sft = out_sft * conditions[i - 1] + conditions[i]
116
+ out = torch.cat([out_same, out_sft], dim=1)
117
+ else: # apply SFT to all the channels
118
+ out = out * conditions[i - 1] + conditions[i]
119
+
120
+ out = conv2(out, latent[:, i + 1], noise=noise2)
121
+ skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space
122
+ i += 2
123
+
124
+ image = skip
125
+
126
+ if return_latents:
127
+ return image, latent
128
+ else:
129
+ return image, None
130
+
131
+
132
+ class ConvUpLayer(nn.Module):
133
+ """Convolutional upsampling layer. It uses bilinear upsampler + Conv.
134
+
135
+ Args:
136
+ in_channels (int): Channel number of the input.
137
+ out_channels (int): Channel number of the output.
138
+ kernel_size (int): Size of the convolving kernel.
139
+ stride (int): Stride of the convolution. Default: 1
140
+ padding (int): Zero-padding added to both sides of the input. Default: 0.
141
+ bias (bool): If ``True``, adds a learnable bias to the output. Default: ``True``.
142
+ bias_init_val (float): Bias initialized value. Default: 0.
143
+ activate (bool): Whether use activateion. Default: True.
144
+ """
145
+
146
+ def __init__(self,
147
+ in_channels,
148
+ out_channels,
149
+ kernel_size,
150
+ stride=1,
151
+ padding=0,
152
+ bias=True,
153
+ bias_init_val=0,
154
+ activate=True):
155
+ super(ConvUpLayer, self).__init__()
156
+ self.in_channels = in_channels
157
+ self.out_channels = out_channels
158
+ self.kernel_size = kernel_size
159
+ self.stride = stride
160
+ self.padding = padding
161
+ # self.scale is used to scale the convolution weights, which is related to the common initializations.
162
+ self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
163
+
164
+ self.weight = nn.Parameter(torch.randn(out_channels, in_channels, kernel_size, kernel_size))
165
+
166
+ if bias and not activate:
167
+ self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
168
+ else:
169
+ self.register_parameter('bias', None)
170
+
171
+ # activation
172
+ if activate:
173
+ if bias:
174
+ self.activation = FusedLeakyReLU(out_channels)
175
+ else:
176
+ self.activation = ScaledLeakyReLU(0.2)
177
+ else:
178
+ self.activation = None
179
+
180
+ def forward(self, x):
181
+ # bilinear upsample
182
+ out = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
183
+ # conv
184
+ out = F.conv2d(
185
+ out,
186
+ self.weight * self.scale,
187
+ bias=self.bias,
188
+ stride=self.stride,
189
+ padding=self.padding,
190
+ )
191
+ # activation
192
+ if self.activation is not None:
193
+ out = self.activation(out)
194
+ return out
195
+
196
+
197
+ class ResUpBlock(nn.Module):
198
+ """Residual block with upsampling.
199
+
200
+ Args:
201
+ in_channels (int): Channel number of the input.
202
+ out_channels (int): Channel number of the output.
203
+ """
204
+
205
+ def __init__(self, in_channels, out_channels):
206
+ super(ResUpBlock, self).__init__()
207
+
208
+ self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True)
209
+ self.conv2 = ConvUpLayer(in_channels, out_channels, 3, stride=1, padding=1, bias=True, activate=True)
210
+ self.skip = ConvUpLayer(in_channels, out_channels, 1, bias=False, activate=False)
211
+
212
+ def forward(self, x):
213
+ out = self.conv1(x)
214
+ out = self.conv2(out)
215
+ skip = self.skip(x)
216
+ out = (out + skip) / math.sqrt(2)
217
+ return out
218
+
219
+
220
+ @ARCH_REGISTRY.register()
221
+ class GFPGANv1(nn.Module):
222
+ """The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT.
223
+
224
+ Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior.
225
+
226
+ Args:
227
+ out_size (int): The spatial size of outputs.
228
+ num_style_feat (int): Channel number of style features. Default: 512.
229
+ channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
230
+ resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. A cross production will be
231
+ applied to extent 1D resample kernel to 2D resample kernel. Default: (1, 3, 3, 1).
232
+ decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None.
233
+ fix_decoder (bool): Whether to fix the decoder. Default: True.
234
+
235
+ num_mlp (int): Layer number of MLP style layers. Default: 8.
236
+ lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
237
+ input_is_latent (bool): Whether input is latent style. Default: False.
238
+ different_w (bool): Whether to use different latent w for different layers. Default: False.
239
+ narrow (float): The narrow ratio for channels. Default: 1.
240
+ sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
241
+ """
242
+
243
+ def __init__(
244
+ self,
245
+ out_size,
246
+ num_style_feat=512,
247
+ channel_multiplier=1,
248
+ resample_kernel=(1, 3, 3, 1),
249
+ decoder_load_path=None,
250
+ fix_decoder=True,
251
+ # for stylegan decoder
252
+ num_mlp=8,
253
+ lr_mlp=0.01,
254
+ input_is_latent=False,
255
+ different_w=False,
256
+ narrow=1,
257
+ sft_half=False):
258
+
259
+ super(GFPGANv1, self).__init__()
260
+ self.input_is_latent = input_is_latent
261
+ self.different_w = different_w
262
+ self.num_style_feat = num_style_feat
263
+
264
+ unet_narrow = narrow * 0.5 # by default, use a half of input channels
265
+ channels = {
266
+ '4': int(512 * unet_narrow),
267
+ '8': int(512 * unet_narrow),
268
+ '16': int(512 * unet_narrow),
269
+ '32': int(512 * unet_narrow),
270
+ '64': int(256 * channel_multiplier * unet_narrow),
271
+ '128': int(128 * channel_multiplier * unet_narrow),
272
+ '256': int(64 * channel_multiplier * unet_narrow),
273
+ '512': int(32 * channel_multiplier * unet_narrow),
274
+ '1024': int(16 * channel_multiplier * unet_narrow)
275
+ }
276
+
277
+ self.log_size = int(math.log(out_size, 2))
278
+ first_out_size = 2**(int(math.log(out_size, 2)))
279
+
280
+ self.conv_body_first = ConvLayer(3, channels[f'{first_out_size}'], 1, bias=True, activate=True)
281
+
282
+ # downsample
283
+ in_channels = channels[f'{first_out_size}']
284
+ self.conv_body_down = nn.ModuleList()
285
+ for i in range(self.log_size, 2, -1):
286
+ out_channels = channels[f'{2**(i - 1)}']
287
+ self.conv_body_down.append(ResBlock(in_channels, out_channels, resample_kernel))
288
+ in_channels = out_channels
289
+
290
+ self.final_conv = ConvLayer(in_channels, channels['4'], 3, bias=True, activate=True)
291
+
292
+ # upsample
293
+ in_channels = channels['4']
294
+ self.conv_body_up = nn.ModuleList()
295
+ for i in range(3, self.log_size + 1):
296
+ out_channels = channels[f'{2**i}']
297
+ self.conv_body_up.append(ResUpBlock(in_channels, out_channels))
298
+ in_channels = out_channels
299
+
300
+ # to RGB
301
+ self.toRGB = nn.ModuleList()
302
+ for i in range(3, self.log_size + 1):
303
+ self.toRGB.append(EqualConv2d(channels[f'{2**i}'], 3, 1, stride=1, padding=0, bias=True, bias_init_val=0))
304
+
305
+ if different_w:
306
+ linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat
307
+ else:
308
+ linear_out_channel = num_style_feat
309
+
310
+ self.final_linear = EqualLinear(
311
+ channels['4'] * 4 * 4, linear_out_channel, bias=True, bias_init_val=0, lr_mul=1, activation=None)
312
+
313
+ # the decoder: stylegan2 generator with SFT modulations
314
+ self.stylegan_decoder = StyleGAN2GeneratorSFT(
315
+ out_size=out_size,
316
+ num_style_feat=num_style_feat,
317
+ num_mlp=num_mlp,
318
+ channel_multiplier=channel_multiplier,
319
+ resample_kernel=resample_kernel,
320
+ lr_mlp=lr_mlp,
321
+ narrow=narrow,
322
+ sft_half=sft_half)
323
+
324
+ # load pre-trained stylegan2 model if necessary
325
+ if decoder_load_path:
326
+ self.stylegan_decoder.load_state_dict(
327
+ torch.load(decoder_load_path, map_location=lambda storage, loc: storage)['params_ema'])
328
+ # fix decoder without updating params
329
+ if fix_decoder:
330
+ for _, param in self.stylegan_decoder.named_parameters():
331
+ param.requires_grad = False
332
+
333
+ # for SFT modulations (scale and shift)
334
+ self.condition_scale = nn.ModuleList()
335
+ self.condition_shift = nn.ModuleList()
336
+ for i in range(3, self.log_size + 1):
337
+ out_channels = channels[f'{2**i}']
338
+ if sft_half:
339
+ sft_out_channels = out_channels
340
+ else:
341
+ sft_out_channels = out_channels * 2
342
+ self.condition_scale.append(
343
+ nn.Sequential(
344
+ EqualConv2d(out_channels, out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=0),
345
+ ScaledLeakyReLU(0.2),
346
+ EqualConv2d(out_channels, sft_out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=1)))
347
+ self.condition_shift.append(
348
+ nn.Sequential(
349
+ EqualConv2d(out_channels, out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=0),
350
+ ScaledLeakyReLU(0.2),
351
+ EqualConv2d(out_channels, sft_out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=0)))
352
+
353
+ def forward(self, x, return_latents=False, return_rgb=True, randomize_noise=True):
354
+ """Forward function for GFPGANv1.
355
+
356
+ Args:
357
+ x (Tensor): Input images.
358
+ return_latents (bool): Whether to return style latents. Default: False.
359
+ return_rgb (bool): Whether return intermediate rgb images. Default: True.
360
+ randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
361
+ """
362
+ conditions = []
363
+ unet_skips = []
364
+ out_rgbs = []
365
+
366
+ # encoder
367
+ feat = self.conv_body_first(x)
368
+ for i in range(self.log_size - 2):
369
+ feat = self.conv_body_down[i](feat)
370
+ unet_skips.insert(0, feat)
371
+
372
+ feat = self.final_conv(feat)
373
+
374
+ # style code
375
+ style_code = self.final_linear(feat.view(feat.size(0), -1))
376
+ if self.different_w:
377
+ style_code = style_code.view(style_code.size(0), -1, self.num_style_feat)
378
+
379
+ # decode
380
+ for i in range(self.log_size - 2):
381
+ # add unet skip
382
+ feat = feat + unet_skips[i]
383
+ # ResUpLayer
384
+ feat = self.conv_body_up[i](feat)
385
+ # generate scale and shift for SFT layers
386
+ scale = self.condition_scale[i](feat)
387
+ conditions.append(scale.clone())
388
+ shift = self.condition_shift[i](feat)
389
+ conditions.append(shift.clone())
390
+ # generate rgb images
391
+ if return_rgb:
392
+ out_rgbs.append(self.toRGB[i](feat))
393
+
394
+ # decoder
395
+ image, _ = self.stylegan_decoder([style_code],
396
+ conditions,
397
+ return_latents=return_latents,
398
+ input_is_latent=self.input_is_latent,
399
+ randomize_noise=randomize_noise)
400
+
401
+ return image, out_rgbs
402
+
403
+
404
+ @ARCH_REGISTRY.register()
405
+ class FacialComponentDiscriminator(nn.Module):
406
+ """Facial component (eyes, mouth, noise) discriminator used in GFPGAN.
407
+ """
408
+
409
+ def __init__(self):
410
+ super(FacialComponentDiscriminator, self).__init__()
411
+ # It now uses a VGG-style architectrue with fixed model size
412
+ self.conv1 = ConvLayer(3, 64, 3, downsample=False, resample_kernel=(1, 3, 3, 1), bias=True, activate=True)
413
+ self.conv2 = ConvLayer(64, 128, 3, downsample=True, resample_kernel=(1, 3, 3, 1), bias=True, activate=True)
414
+ self.conv3 = ConvLayer(128, 128, 3, downsample=False, resample_kernel=(1, 3, 3, 1), bias=True, activate=True)
415
+ self.conv4 = ConvLayer(128, 256, 3, downsample=True, resample_kernel=(1, 3, 3, 1), bias=True, activate=True)
416
+ self.conv5 = ConvLayer(256, 256, 3, downsample=False, resample_kernel=(1, 3, 3, 1), bias=True, activate=True)
417
+ self.final_conv = ConvLayer(256, 1, 3, bias=True, activate=False)
418
+
419
+ def forward(self, x, return_feats=False):
420
+ """Forward function for FacialComponentDiscriminator.
421
+
422
+ Args:
423
+ x (Tensor): Input images.
424
+ return_feats (bool): Whether to return intermediate features. Default: False.
425
+ """
426
+ feat = self.conv1(x)
427
+ feat = self.conv3(self.conv2(feat))
428
+ rlt_feats = []
429
+ if return_feats:
430
+ rlt_feats.append(feat.clone())
431
+ feat = self.conv5(self.conv4(feat))
432
+ if return_feats:
433
+ rlt_feats.append(feat.clone())
434
+ out = self.final_conv(feat)
435
+
436
+ if return_feats:
437
+ return out, rlt_feats
438
+ else:
439
+ return out, None
gfpgan/archs/gfpganv1_clean_arch.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import random
3
+ import torch
4
+ from basicsr.utils.registry import ARCH_REGISTRY
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+
8
+ from .stylegan2_clean_arch import StyleGAN2GeneratorClean
9
+
10
+
11
+ class StyleGAN2GeneratorCSFT(StyleGAN2GeneratorClean):
12
+ """StyleGAN2 Generator with SFT modulation (Spatial Feature Transform).
13
+
14
+ It is the clean version without custom compiled CUDA extensions used in StyleGAN2.
15
+
16
+ Args:
17
+ out_size (int): The spatial size of outputs.
18
+ num_style_feat (int): Channel number of style features. Default: 512.
19
+ num_mlp (int): Layer number of MLP style layers. Default: 8.
20
+ channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
21
+ narrow (float): The narrow ratio for channels. Default: 1.
22
+ sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
23
+ """
24
+
25
+ def __init__(self, out_size, num_style_feat=512, num_mlp=8, channel_multiplier=2, narrow=1, sft_half=False):
26
+ super(StyleGAN2GeneratorCSFT, self).__init__(
27
+ out_size,
28
+ num_style_feat=num_style_feat,
29
+ num_mlp=num_mlp,
30
+ channel_multiplier=channel_multiplier,
31
+ narrow=narrow)
32
+ self.sft_half = sft_half
33
+
34
+ def forward(self,
35
+ styles,
36
+ conditions,
37
+ input_is_latent=False,
38
+ noise=None,
39
+ randomize_noise=True,
40
+ truncation=1,
41
+ truncation_latent=None,
42
+ inject_index=None,
43
+ return_latents=False):
44
+ """Forward function for StyleGAN2GeneratorCSFT.
45
+
46
+ Args:
47
+ styles (list[Tensor]): Sample codes of styles.
48
+ conditions (list[Tensor]): SFT conditions to generators.
49
+ input_is_latent (bool): Whether input is latent style. Default: False.
50
+ noise (Tensor | None): Input noise or None. Default: None.
51
+ randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
52
+ truncation (float): The truncation ratio. Default: 1.
53
+ truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
54
+ inject_index (int | None): The injection index for mixing noise. Default: None.
55
+ return_latents (bool): Whether to return style latents. Default: False.
56
+ """
57
+ # style codes -> latents with Style MLP layer
58
+ if not input_is_latent:
59
+ styles = [self.style_mlp(s) for s in styles]
60
+ # noises
61
+ if noise is None:
62
+ if randomize_noise:
63
+ noise = [None] * self.num_layers # for each style conv layer
64
+ else: # use the stored noise
65
+ noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
66
+ # style truncation
67
+ if truncation < 1:
68
+ style_truncation = []
69
+ for style in styles:
70
+ style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
71
+ styles = style_truncation
72
+ # get style latents with injection
73
+ if len(styles) == 1:
74
+ inject_index = self.num_latent
75
+
76
+ if styles[0].ndim < 3:
77
+ # repeat latent code for all the layers
78
+ latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
79
+ else: # used for encoder with different latent code for each layer
80
+ latent = styles[0]
81
+ elif len(styles) == 2: # mixing noises
82
+ if inject_index is None:
83
+ inject_index = random.randint(1, self.num_latent - 1)
84
+ latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
85
+ latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
86
+ latent = torch.cat([latent1, latent2], 1)
87
+
88
+ # main generation
89
+ out = self.constant_input(latent.shape[0])
90
+ out = self.style_conv1(out, latent[:, 0], noise=noise[0])
91
+ skip = self.to_rgb1(out, latent[:, 1])
92
+
93
+ i = 1
94
+ for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
95
+ noise[2::2], self.to_rgbs):
96
+ out = conv1(out, latent[:, i], noise=noise1)
97
+
98
+ # the conditions may have fewer levels
99
+ if i < len(conditions):
100
+ # SFT part to combine the conditions
101
+ if self.sft_half: # only apply SFT to half of the channels
102
+ out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1)
103
+ out_sft = out_sft * conditions[i - 1] + conditions[i]
104
+ out = torch.cat([out_same, out_sft], dim=1)
105
+ else: # apply SFT to all the channels
106
+ out = out * conditions[i - 1] + conditions[i]
107
+
108
+ out = conv2(out, latent[:, i + 1], noise=noise2)
109
+ skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space
110
+ i += 2
111
+
112
+ image = skip
113
+
114
+ if return_latents:
115
+ return image, latent
116
+ else:
117
+ return image, None
118
+
119
+
120
+ class ResBlock(nn.Module):
121
+ """Residual block with bilinear upsampling/downsampling.
122
+
123
+ Args:
124
+ in_channels (int): Channel number of the input.
125
+ out_channels (int): Channel number of the output.
126
+ mode (str): Upsampling/downsampling mode. Options: down | up. Default: down.
127
+ """
128
+
129
+ def __init__(self, in_channels, out_channels, mode='down'):
130
+ super(ResBlock, self).__init__()
131
+
132
+ self.conv1 = nn.Conv2d(in_channels, in_channels, 3, 1, 1)
133
+ self.conv2 = nn.Conv2d(in_channels, out_channels, 3, 1, 1)
134
+ self.skip = nn.Conv2d(in_channels, out_channels, 1, bias=False)
135
+ if mode == 'down':
136
+ self.scale_factor = 0.5
137
+ elif mode == 'up':
138
+ self.scale_factor = 2
139
+
140
+ def forward(self, x):
141
+ out = F.leaky_relu_(self.conv1(x), negative_slope=0.2)
142
+ # upsample/downsample
143
+ out = F.interpolate(out, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
144
+ out = F.leaky_relu_(self.conv2(out), negative_slope=0.2)
145
+ # skip
146
+ x = F.interpolate(x, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
147
+ skip = self.skip(x)
148
+ out = out + skip
149
+ return out
150
+
151
+
152
+ @ARCH_REGISTRY.register()
153
+ class GFPGANv1Clean(nn.Module):
154
+ """The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT.
155
+
156
+ It is the clean version without custom compiled CUDA extensions used in StyleGAN2.
157
+
158
+ Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior.
159
+
160
+ Args:
161
+ out_size (int): The spatial size of outputs.
162
+ num_style_feat (int): Channel number of style features. Default: 512.
163
+ channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
164
+ decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None.
165
+ fix_decoder (bool): Whether to fix the decoder. Default: True.
166
+
167
+ num_mlp (int): Layer number of MLP style layers. Default: 8.
168
+ input_is_latent (bool): Whether input is latent style. Default: False.
169
+ different_w (bool): Whether to use different latent w for different layers. Default: False.
170
+ narrow (float): The narrow ratio for channels. Default: 1.
171
+ sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
172
+ """
173
+
174
+ def __init__(
175
+ self,
176
+ out_size,
177
+ num_style_feat=512,
178
+ channel_multiplier=1,
179
+ decoder_load_path=None,
180
+ fix_decoder=True,
181
+ # for stylegan decoder
182
+ num_mlp=8,
183
+ input_is_latent=False,
184
+ different_w=False,
185
+ narrow=1,
186
+ sft_half=False):
187
+
188
+ super(GFPGANv1Clean, self).__init__()
189
+ self.input_is_latent = input_is_latent
190
+ self.different_w = different_w
191
+ self.num_style_feat = num_style_feat
192
+
193
+ unet_narrow = narrow * 0.5 # by default, use a half of input channels
194
+ channels = {
195
+ '4': int(512 * unet_narrow),
196
+ '8': int(512 * unet_narrow),
197
+ '16': int(512 * unet_narrow),
198
+ '32': int(512 * unet_narrow),
199
+ '64': int(256 * channel_multiplier * unet_narrow),
200
+ '128': int(128 * channel_multiplier * unet_narrow),
201
+ '256': int(64 * channel_multiplier * unet_narrow),
202
+ '512': int(32 * channel_multiplier * unet_narrow),
203
+ '1024': int(16 * channel_multiplier * unet_narrow)
204
+ }
205
+
206
+ self.log_size = int(math.log(out_size, 2))
207
+ first_out_size = 2**(int(math.log(out_size, 2)))
208
+
209
+ self.conv_body_first = nn.Conv2d(3, channels[f'{first_out_size}'], 1)
210
+
211
+ # downsample
212
+ in_channels = channels[f'{first_out_size}']
213
+ self.conv_body_down = nn.ModuleList()
214
+ for i in range(self.log_size, 2, -1):
215
+ out_channels = channels[f'{2**(i - 1)}']
216
+ self.conv_body_down.append(ResBlock(in_channels, out_channels, mode='down'))
217
+ in_channels = out_channels
218
+
219
+ self.final_conv = nn.Conv2d(in_channels, channels['4'], 3, 1, 1)
220
+
221
+ # upsample
222
+ in_channels = channels['4']
223
+ self.conv_body_up = nn.ModuleList()
224
+ for i in range(3, self.log_size + 1):
225
+ out_channels = channels[f'{2**i}']
226
+ self.conv_body_up.append(ResBlock(in_channels, out_channels, mode='up'))
227
+ in_channels = out_channels
228
+
229
+ # to RGB
230
+ self.toRGB = nn.ModuleList()
231
+ for i in range(3, self.log_size + 1):
232
+ self.toRGB.append(nn.Conv2d(channels[f'{2**i}'], 3, 1))
233
+
234
+ if different_w:
235
+ linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat
236
+ else:
237
+ linear_out_channel = num_style_feat
238
+
239
+ self.final_linear = nn.Linear(channels['4'] * 4 * 4, linear_out_channel)
240
+
241
+ # the decoder: stylegan2 generator with SFT modulations
242
+ self.stylegan_decoder = StyleGAN2GeneratorCSFT(
243
+ out_size=out_size,
244
+ num_style_feat=num_style_feat,
245
+ num_mlp=num_mlp,
246
+ channel_multiplier=channel_multiplier,
247
+ narrow=narrow,
248
+ sft_half=sft_half)
249
+
250
+ # load pre-trained stylegan2 model if necessary
251
+ if decoder_load_path:
252
+ self.stylegan_decoder.load_state_dict(
253
+ torch.load(decoder_load_path, map_location=lambda storage, loc: storage)['params_ema'])
254
+ # fix decoder without updating params
255
+ if fix_decoder:
256
+ for _, param in self.stylegan_decoder.named_parameters():
257
+ param.requires_grad = False
258
+
259
+ # for SFT modulations (scale and shift)
260
+ self.condition_scale = nn.ModuleList()
261
+ self.condition_shift = nn.ModuleList()
262
+ for i in range(3, self.log_size + 1):
263
+ out_channels = channels[f'{2**i}']
264
+ if sft_half:
265
+ sft_out_channels = out_channels
266
+ else:
267
+ sft_out_channels = out_channels * 2
268
+ self.condition_scale.append(
269
+ nn.Sequential(
270
+ nn.Conv2d(out_channels, out_channels, 3, 1, 1), nn.LeakyReLU(0.2, True),
271
+ nn.Conv2d(out_channels, sft_out_channels, 3, 1, 1)))
272
+ self.condition_shift.append(
273
+ nn.Sequential(
274
+ nn.Conv2d(out_channels, out_channels, 3, 1, 1), nn.LeakyReLU(0.2, True),
275
+ nn.Conv2d(out_channels, sft_out_channels, 3, 1, 1)))
276
+
277
+ def forward(self, x, return_latents=False, return_rgb=True, randomize_noise=True):
278
+ """Forward function for GFPGANv1Clean.
279
+
280
+ Args:
281
+ x (Tensor): Input images.
282
+ return_latents (bool): Whether to return style latents. Default: False.
283
+ return_rgb (bool): Whether return intermediate rgb images. Default: True.
284
+ randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
285
+ """
286
+ conditions = []
287
+ unet_skips = []
288
+ out_rgbs = []
289
+
290
+ # encoder
291
+ feat = F.leaky_relu_(self.conv_body_first(x), negative_slope=0.2)
292
+ for i in range(self.log_size - 2):
293
+ feat = self.conv_body_down[i](feat)
294
+ unet_skips.insert(0, feat)
295
+ feat = F.leaky_relu_(self.final_conv(feat), negative_slope=0.2)
296
+
297
+ # style code
298
+ style_code = self.final_linear(feat.view(feat.size(0), -1))
299
+ if self.different_w:
300
+ style_code = style_code.view(style_code.size(0), -1, self.num_style_feat)
301
+
302
+ # decode
303
+ for i in range(self.log_size - 2):
304
+ # add unet skip
305
+ feat = feat + unet_skips[i]
306
+ # ResUpLayer
307
+ feat = self.conv_body_up[i](feat)
308
+ # generate scale and shift for SFT layers
309
+ scale = self.condition_scale[i](feat)
310
+ conditions.append(scale.clone())
311
+ shift = self.condition_shift[i](feat)
312
+ conditions.append(shift.clone())
313
+ # generate rgb images
314
+ if return_rgb:
315
+ out_rgbs.append(self.toRGB[i](feat))
316
+
317
+ # decoder
318
+ image, _ = self.stylegan_decoder([style_code],
319
+ conditions,
320
+ return_latents=return_latents,
321
+ input_is_latent=self.input_is_latent,
322
+ randomize_noise=randomize_noise)
323
+
324
+ return image, out_rgbs
gfpgan/archs/stylegan2_bilinear_arch.py ADDED
@@ -0,0 +1,613 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import random
3
+ import torch
4
+ from basicsr.ops.fused_act import FusedLeakyReLU, fused_leaky_relu
5
+ from basicsr.utils.registry import ARCH_REGISTRY
6
+ from torch import nn
7
+ from torch.nn import functional as F
8
+
9
+
10
+ class NormStyleCode(nn.Module):
11
+
12
+ def forward(self, x):
13
+ """Normalize the style codes.
14
+
15
+ Args:
16
+ x (Tensor): Style codes with shape (b, c).
17
+
18
+ Returns:
19
+ Tensor: Normalized tensor.
20
+ """
21
+ return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8)
22
+
23
+
24
+ class EqualLinear(nn.Module):
25
+ """Equalized Linear as StyleGAN2.
26
+
27
+ Args:
28
+ in_channels (int): Size of each sample.
29
+ out_channels (int): Size of each output sample.
30
+ bias (bool): If set to ``False``, the layer will not learn an additive
31
+ bias. Default: ``True``.
32
+ bias_init_val (float): Bias initialized value. Default: 0.
33
+ lr_mul (float): Learning rate multiplier. Default: 1.
34
+ activation (None | str): The activation after ``linear`` operation.
35
+ Supported: 'fused_lrelu', None. Default: None.
36
+ """
37
+
38
+ def __init__(self, in_channels, out_channels, bias=True, bias_init_val=0, lr_mul=1, activation=None):
39
+ super(EqualLinear, self).__init__()
40
+ self.in_channels = in_channels
41
+ self.out_channels = out_channels
42
+ self.lr_mul = lr_mul
43
+ self.activation = activation
44
+ if self.activation not in ['fused_lrelu', None]:
45
+ raise ValueError(f'Wrong activation value in EqualLinear: {activation}'
46
+ "Supported ones are: ['fused_lrelu', None].")
47
+ self.scale = (1 / math.sqrt(in_channels)) * lr_mul
48
+
49
+ self.weight = nn.Parameter(torch.randn(out_channels, in_channels).div_(lr_mul))
50
+ if bias:
51
+ self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
52
+ else:
53
+ self.register_parameter('bias', None)
54
+
55
+ def forward(self, x):
56
+ if self.bias is None:
57
+ bias = None
58
+ else:
59
+ bias = self.bias * self.lr_mul
60
+ if self.activation == 'fused_lrelu':
61
+ out = F.linear(x, self.weight * self.scale)
62
+ out = fused_leaky_relu(out, bias)
63
+ else:
64
+ out = F.linear(x, self.weight * self.scale, bias=bias)
65
+ return out
66
+
67
+ def __repr__(self):
68
+ return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
69
+ f'out_channels={self.out_channels}, bias={self.bias is not None})')
70
+
71
+
72
+ class ModulatedConv2d(nn.Module):
73
+ """Modulated Conv2d used in StyleGAN2.
74
+
75
+ There is no bias in ModulatedConv2d.
76
+
77
+ Args:
78
+ in_channels (int): Channel number of the input.
79
+ out_channels (int): Channel number of the output.
80
+ kernel_size (int): Size of the convolving kernel.
81
+ num_style_feat (int): Channel number of style features.
82
+ demodulate (bool): Whether to demodulate in the conv layer.
83
+ Default: True.
84
+ sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
85
+ Default: None.
86
+ eps (float): A value added to the denominator for numerical stability.
87
+ Default: 1e-8.
88
+ """
89
+
90
+ def __init__(self,
91
+ in_channels,
92
+ out_channels,
93
+ kernel_size,
94
+ num_style_feat,
95
+ demodulate=True,
96
+ sample_mode=None,
97
+ eps=1e-8,
98
+ interpolation_mode='bilinear'):
99
+ super(ModulatedConv2d, self).__init__()
100
+ self.in_channels = in_channels
101
+ self.out_channels = out_channels
102
+ self.kernel_size = kernel_size
103
+ self.demodulate = demodulate
104
+ self.sample_mode = sample_mode
105
+ self.eps = eps
106
+ self.interpolation_mode = interpolation_mode
107
+ if self.interpolation_mode == 'nearest':
108
+ self.align_corners = None
109
+ else:
110
+ self.align_corners = False
111
+
112
+ self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
113
+ # modulation inside each modulated conv
114
+ self.modulation = EqualLinear(
115
+ num_style_feat, in_channels, bias=True, bias_init_val=1, lr_mul=1, activation=None)
116
+
117
+ self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels, kernel_size, kernel_size))
118
+ self.padding = kernel_size // 2
119
+
120
+ def forward(self, x, style):
121
+ """Forward function.
122
+
123
+ Args:
124
+ x (Tensor): Tensor with shape (b, c, h, w).
125
+ style (Tensor): Tensor with shape (b, num_style_feat).
126
+
127
+ Returns:
128
+ Tensor: Modulated tensor after convolution.
129
+ """
130
+ b, c, h, w = x.shape # c = c_in
131
+ # weight modulation
132
+ style = self.modulation(style).view(b, 1, c, 1, 1)
133
+ # self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1)
134
+ weight = self.scale * self.weight * style # (b, c_out, c_in, k, k)
135
+
136
+ if self.demodulate:
137
+ demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
138
+ weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
139
+
140
+ weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size)
141
+
142
+ if self.sample_mode == 'upsample':
143
+ x = F.interpolate(x, scale_factor=2, mode=self.interpolation_mode, align_corners=self.align_corners)
144
+ elif self.sample_mode == 'downsample':
145
+ x = F.interpolate(x, scale_factor=0.5, mode=self.interpolation_mode, align_corners=self.align_corners)
146
+
147
+ b, c, h, w = x.shape
148
+ x = x.view(1, b * c, h, w)
149
+ # weight: (b*c_out, c_in, k, k), groups=b
150
+ out = F.conv2d(x, weight, padding=self.padding, groups=b)
151
+ out = out.view(b, self.out_channels, *out.shape[2:4])
152
+
153
+ return out
154
+
155
+ def __repr__(self):
156
+ return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
157
+ f'out_channels={self.out_channels}, '
158
+ f'kernel_size={self.kernel_size}, '
159
+ f'demodulate={self.demodulate}, sample_mode={self.sample_mode})')
160
+
161
+
162
+ class StyleConv(nn.Module):
163
+ """Style conv.
164
+
165
+ Args:
166
+ in_channels (int): Channel number of the input.
167
+ out_channels (int): Channel number of the output.
168
+ kernel_size (int): Size of the convolving kernel.
169
+ num_style_feat (int): Channel number of style features.
170
+ demodulate (bool): Whether demodulate in the conv layer. Default: True.
171
+ sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
172
+ Default: None.
173
+ """
174
+
175
+ def __init__(self,
176
+ in_channels,
177
+ out_channels,
178
+ kernel_size,
179
+ num_style_feat,
180
+ demodulate=True,
181
+ sample_mode=None,
182
+ interpolation_mode='bilinear'):
183
+ super(StyleConv, self).__init__()
184
+ self.modulated_conv = ModulatedConv2d(
185
+ in_channels,
186
+ out_channels,
187
+ kernel_size,
188
+ num_style_feat,
189
+ demodulate=demodulate,
190
+ sample_mode=sample_mode,
191
+ interpolation_mode=interpolation_mode)
192
+ self.weight = nn.Parameter(torch.zeros(1)) # for noise injection
193
+ self.activate = FusedLeakyReLU(out_channels)
194
+
195
+ def forward(self, x, style, noise=None):
196
+ # modulate
197
+ out = self.modulated_conv(x, style)
198
+ # noise injection
199
+ if noise is None:
200
+ b, _, h, w = out.shape
201
+ noise = out.new_empty(b, 1, h, w).normal_()
202
+ out = out + self.weight * noise
203
+ # activation (with bias)
204
+ out = self.activate(out)
205
+ return out
206
+
207
+
208
+ class ToRGB(nn.Module):
209
+ """To RGB from features.
210
+
211
+ Args:
212
+ in_channels (int): Channel number of input.
213
+ num_style_feat (int): Channel number of style features.
214
+ upsample (bool): Whether to upsample. Default: True.
215
+ """
216
+
217
+ def __init__(self, in_channels, num_style_feat, upsample=True, interpolation_mode='bilinear'):
218
+ super(ToRGB, self).__init__()
219
+ self.upsample = upsample
220
+ self.interpolation_mode = interpolation_mode
221
+ if self.interpolation_mode == 'nearest':
222
+ self.align_corners = None
223
+ else:
224
+ self.align_corners = False
225
+ self.modulated_conv = ModulatedConv2d(
226
+ in_channels,
227
+ 3,
228
+ kernel_size=1,
229
+ num_style_feat=num_style_feat,
230
+ demodulate=False,
231
+ sample_mode=None,
232
+ interpolation_mode=interpolation_mode)
233
+ self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
234
+
235
+ def forward(self, x, style, skip=None):
236
+ """Forward function.
237
+
238
+ Args:
239
+ x (Tensor): Feature tensor with shape (b, c, h, w).
240
+ style (Tensor): Tensor with shape (b, num_style_feat).
241
+ skip (Tensor): Base/skip tensor. Default: None.
242
+
243
+ Returns:
244
+ Tensor: RGB images.
245
+ """
246
+ out = self.modulated_conv(x, style)
247
+ out = out + self.bias
248
+ if skip is not None:
249
+ if self.upsample:
250
+ skip = F.interpolate(
251
+ skip, scale_factor=2, mode=self.interpolation_mode, align_corners=self.align_corners)
252
+ out = out + skip
253
+ return out
254
+
255
+
256
+ class ConstantInput(nn.Module):
257
+ """Constant input.
258
+
259
+ Args:
260
+ num_channel (int): Channel number of constant input.
261
+ size (int): Spatial size of constant input.
262
+ """
263
+
264
+ def __init__(self, num_channel, size):
265
+ super(ConstantInput, self).__init__()
266
+ self.weight = nn.Parameter(torch.randn(1, num_channel, size, size))
267
+
268
+ def forward(self, batch):
269
+ out = self.weight.repeat(batch, 1, 1, 1)
270
+ return out
271
+
272
+
273
+ @ARCH_REGISTRY.register()
274
+ class StyleGAN2GeneratorBilinear(nn.Module):
275
+ """StyleGAN2 Generator.
276
+
277
+ Args:
278
+ out_size (int): The spatial size of outputs.
279
+ num_style_feat (int): Channel number of style features. Default: 512.
280
+ num_mlp (int): Layer number of MLP style layers. Default: 8.
281
+ channel_multiplier (int): Channel multiplier for large networks of
282
+ StyleGAN2. Default: 2.
283
+ lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
284
+ narrow (float): Narrow ratio for channels. Default: 1.0.
285
+ """
286
+
287
+ def __init__(self,
288
+ out_size,
289
+ num_style_feat=512,
290
+ num_mlp=8,
291
+ channel_multiplier=2,
292
+ lr_mlp=0.01,
293
+ narrow=1,
294
+ interpolation_mode='bilinear'):
295
+ super(StyleGAN2GeneratorBilinear, self).__init__()
296
+ # Style MLP layers
297
+ self.num_style_feat = num_style_feat
298
+ style_mlp_layers = [NormStyleCode()]
299
+ for i in range(num_mlp):
300
+ style_mlp_layers.append(
301
+ EqualLinear(
302
+ num_style_feat, num_style_feat, bias=True, bias_init_val=0, lr_mul=lr_mlp,
303
+ activation='fused_lrelu'))
304
+ self.style_mlp = nn.Sequential(*style_mlp_layers)
305
+
306
+ channels = {
307
+ '4': int(512 * narrow),
308
+ '8': int(512 * narrow),
309
+ '16': int(512 * narrow),
310
+ '32': int(512 * narrow),
311
+ '64': int(256 * channel_multiplier * narrow),
312
+ '128': int(128 * channel_multiplier * narrow),
313
+ '256': int(64 * channel_multiplier * narrow),
314
+ '512': int(32 * channel_multiplier * narrow),
315
+ '1024': int(16 * channel_multiplier * narrow)
316
+ }
317
+ self.channels = channels
318
+
319
+ self.constant_input = ConstantInput(channels['4'], size=4)
320
+ self.style_conv1 = StyleConv(
321
+ channels['4'],
322
+ channels['4'],
323
+ kernel_size=3,
324
+ num_style_feat=num_style_feat,
325
+ demodulate=True,
326
+ sample_mode=None,
327
+ interpolation_mode=interpolation_mode)
328
+ self.to_rgb1 = ToRGB(channels['4'], num_style_feat, upsample=False, interpolation_mode=interpolation_mode)
329
+
330
+ self.log_size = int(math.log(out_size, 2))
331
+ self.num_layers = (self.log_size - 2) * 2 + 1
332
+ self.num_latent = self.log_size * 2 - 2
333
+
334
+ self.style_convs = nn.ModuleList()
335
+ self.to_rgbs = nn.ModuleList()
336
+ self.noises = nn.Module()
337
+
338
+ in_channels = channels['4']
339
+ # noise
340
+ for layer_idx in range(self.num_layers):
341
+ resolution = 2**((layer_idx + 5) // 2)
342
+ shape = [1, 1, resolution, resolution]
343
+ self.noises.register_buffer(f'noise{layer_idx}', torch.randn(*shape))
344
+ # style convs and to_rgbs
345
+ for i in range(3, self.log_size + 1):
346
+ out_channels = channels[f'{2**i}']
347
+ self.style_convs.append(
348
+ StyleConv(
349
+ in_channels,
350
+ out_channels,
351
+ kernel_size=3,
352
+ num_style_feat=num_style_feat,
353
+ demodulate=True,
354
+ sample_mode='upsample',
355
+ interpolation_mode=interpolation_mode))
356
+ self.style_convs.append(
357
+ StyleConv(
358
+ out_channels,
359
+ out_channels,
360
+ kernel_size=3,
361
+ num_style_feat=num_style_feat,
362
+ demodulate=True,
363
+ sample_mode=None,
364
+ interpolation_mode=interpolation_mode))
365
+ self.to_rgbs.append(
366
+ ToRGB(out_channels, num_style_feat, upsample=True, interpolation_mode=interpolation_mode))
367
+ in_channels = out_channels
368
+
369
+ def make_noise(self):
370
+ """Make noise for noise injection."""
371
+ device = self.constant_input.weight.device
372
+ noises = [torch.randn(1, 1, 4, 4, device=device)]
373
+
374
+ for i in range(3, self.log_size + 1):
375
+ for _ in range(2):
376
+ noises.append(torch.randn(1, 1, 2**i, 2**i, device=device))
377
+
378
+ return noises
379
+
380
+ def get_latent(self, x):
381
+ return self.style_mlp(x)
382
+
383
+ def mean_latent(self, num_latent):
384
+ latent_in = torch.randn(num_latent, self.num_style_feat, device=self.constant_input.weight.device)
385
+ latent = self.style_mlp(latent_in).mean(0, keepdim=True)
386
+ return latent
387
+
388
+ def forward(self,
389
+ styles,
390
+ input_is_latent=False,
391
+ noise=None,
392
+ randomize_noise=True,
393
+ truncation=1,
394
+ truncation_latent=None,
395
+ inject_index=None,
396
+ return_latents=False):
397
+ """Forward function for StyleGAN2Generator.
398
+
399
+ Args:
400
+ styles (list[Tensor]): Sample codes of styles.
401
+ input_is_latent (bool): Whether input is latent style.
402
+ Default: False.
403
+ noise (Tensor | None): Input noise or None. Default: None.
404
+ randomize_noise (bool): Randomize noise, used when 'noise' is
405
+ False. Default: True.
406
+ truncation (float): TODO. Default: 1.
407
+ truncation_latent (Tensor | None): TODO. Default: None.
408
+ inject_index (int | None): The injection index for mixing noise.
409
+ Default: None.
410
+ return_latents (bool): Whether to return style latents.
411
+ Default: False.
412
+ """
413
+ # style codes -> latents with Style MLP layer
414
+ if not input_is_latent:
415
+ styles = [self.style_mlp(s) for s in styles]
416
+ # noises
417
+ if noise is None:
418
+ if randomize_noise:
419
+ noise = [None] * self.num_layers # for each style conv layer
420
+ else: # use the stored noise
421
+ noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
422
+ # style truncation
423
+ if truncation < 1:
424
+ style_truncation = []
425
+ for style in styles:
426
+ style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
427
+ styles = style_truncation
428
+ # get style latent with injection
429
+ if len(styles) == 1:
430
+ inject_index = self.num_latent
431
+
432
+ if styles[0].ndim < 3:
433
+ # repeat latent code for all the layers
434
+ latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
435
+ else: # used for encoder with different latent code for each layer
436
+ latent = styles[0]
437
+ elif len(styles) == 2: # mixing noises
438
+ if inject_index is None:
439
+ inject_index = random.randint(1, self.num_latent - 1)
440
+ latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
441
+ latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
442
+ latent = torch.cat([latent1, latent2], 1)
443
+
444
+ # main generation
445
+ out = self.constant_input(latent.shape[0])
446
+ out = self.style_conv1(out, latent[:, 0], noise=noise[0])
447
+ skip = self.to_rgb1(out, latent[:, 1])
448
+
449
+ i = 1
450
+ for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
451
+ noise[2::2], self.to_rgbs):
452
+ out = conv1(out, latent[:, i], noise=noise1)
453
+ out = conv2(out, latent[:, i + 1], noise=noise2)
454
+ skip = to_rgb(out, latent[:, i + 2], skip)
455
+ i += 2
456
+
457
+ image = skip
458
+
459
+ if return_latents:
460
+ return image, latent
461
+ else:
462
+ return image, None
463
+
464
+
465
+ class ScaledLeakyReLU(nn.Module):
466
+ """Scaled LeakyReLU.
467
+
468
+ Args:
469
+ negative_slope (float): Negative slope. Default: 0.2.
470
+ """
471
+
472
+ def __init__(self, negative_slope=0.2):
473
+ super(ScaledLeakyReLU, self).__init__()
474
+ self.negative_slope = negative_slope
475
+
476
+ def forward(self, x):
477
+ out = F.leaky_relu(x, negative_slope=self.negative_slope)
478
+ return out * math.sqrt(2)
479
+
480
+
481
+ class EqualConv2d(nn.Module):
482
+ """Equalized Linear as StyleGAN2.
483
+
484
+ Args:
485
+ in_channels (int): Channel number of the input.
486
+ out_channels (int): Channel number of the output.
487
+ kernel_size (int): Size of the convolving kernel.
488
+ stride (int): Stride of the convolution. Default: 1
489
+ padding (int): Zero-padding added to both sides of the input.
490
+ Default: 0.
491
+ bias (bool): If ``True``, adds a learnable bias to the output.
492
+ Default: ``True``.
493
+ bias_init_val (float): Bias initialized value. Default: 0.
494
+ """
495
+
496
+ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True, bias_init_val=0):
497
+ super(EqualConv2d, self).__init__()
498
+ self.in_channels = in_channels
499
+ self.out_channels = out_channels
500
+ self.kernel_size = kernel_size
501
+ self.stride = stride
502
+ self.padding = padding
503
+ self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
504
+
505
+ self.weight = nn.Parameter(torch.randn(out_channels, in_channels, kernel_size, kernel_size))
506
+ if bias:
507
+ self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
508
+ else:
509
+ self.register_parameter('bias', None)
510
+
511
+ def forward(self, x):
512
+ out = F.conv2d(
513
+ x,
514
+ self.weight * self.scale,
515
+ bias=self.bias,
516
+ stride=self.stride,
517
+ padding=self.padding,
518
+ )
519
+
520
+ return out
521
+
522
+ def __repr__(self):
523
+ return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
524
+ f'out_channels={self.out_channels}, '
525
+ f'kernel_size={self.kernel_size},'
526
+ f' stride={self.stride}, padding={self.padding}, '
527
+ f'bias={self.bias is not None})')
528
+
529
+
530
+ class ConvLayer(nn.Sequential):
531
+ """Conv Layer used in StyleGAN2 Discriminator.
532
+
533
+ Args:
534
+ in_channels (int): Channel number of the input.
535
+ out_channels (int): Channel number of the output.
536
+ kernel_size (int): Kernel size.
537
+ downsample (bool): Whether downsample by a factor of 2.
538
+ Default: False.
539
+ bias (bool): Whether with bias. Default: True.
540
+ activate (bool): Whether use activateion. Default: True.
541
+ """
542
+
543
+ def __init__(self,
544
+ in_channels,
545
+ out_channels,
546
+ kernel_size,
547
+ downsample=False,
548
+ bias=True,
549
+ activate=True,
550
+ interpolation_mode='bilinear'):
551
+ layers = []
552
+ self.interpolation_mode = interpolation_mode
553
+ # downsample
554
+ if downsample:
555
+ if self.interpolation_mode == 'nearest':
556
+ self.align_corners = None
557
+ else:
558
+ self.align_corners = False
559
+
560
+ layers.append(
561
+ torch.nn.Upsample(scale_factor=0.5, mode=interpolation_mode, align_corners=self.align_corners))
562
+ stride = 1
563
+ self.padding = kernel_size // 2
564
+ # conv
565
+ layers.append(
566
+ EqualConv2d(
567
+ in_channels, out_channels, kernel_size, stride=stride, padding=self.padding, bias=bias
568
+ and not activate))
569
+ # activation
570
+ if activate:
571
+ if bias:
572
+ layers.append(FusedLeakyReLU(out_channels))
573
+ else:
574
+ layers.append(ScaledLeakyReLU(0.2))
575
+
576
+ super(ConvLayer, self).__init__(*layers)
577
+
578
+
579
+ class ResBlock(nn.Module):
580
+ """Residual block used in StyleGAN2 Discriminator.
581
+
582
+ Args:
583
+ in_channels (int): Channel number of the input.
584
+ out_channels (int): Channel number of the output.
585
+ """
586
+
587
+ def __init__(self, in_channels, out_channels, interpolation_mode='bilinear'):
588
+ super(ResBlock, self).__init__()
589
+
590
+ self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True)
591
+ self.conv2 = ConvLayer(
592
+ in_channels,
593
+ out_channels,
594
+ 3,
595
+ downsample=True,
596
+ interpolation_mode=interpolation_mode,
597
+ bias=True,
598
+ activate=True)
599
+ self.skip = ConvLayer(
600
+ in_channels,
601
+ out_channels,
602
+ 1,
603
+ downsample=True,
604
+ interpolation_mode=interpolation_mode,
605
+ bias=False,
606
+ activate=False)
607
+
608
+ def forward(self, x):
609
+ out = self.conv1(x)
610
+ out = self.conv2(out)
611
+ skip = self.skip(x)
612
+ out = (out + skip) / math.sqrt(2)
613
+ return out
gfpgan/archs/stylegan2_clean_arch.py ADDED
@@ -0,0 +1,368 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import random
3
+ import torch
4
+ from basicsr.archs.arch_util import default_init_weights
5
+ from basicsr.utils.registry import ARCH_REGISTRY
6
+ from torch import nn
7
+ from torch.nn import functional as F
8
+
9
+
10
+ class NormStyleCode(nn.Module):
11
+
12
+ def forward(self, x):
13
+ """Normalize the style codes.
14
+
15
+ Args:
16
+ x (Tensor): Style codes with shape (b, c).
17
+
18
+ Returns:
19
+ Tensor: Normalized tensor.
20
+ """
21
+ return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8)
22
+
23
+
24
+ class ModulatedConv2d(nn.Module):
25
+ """Modulated Conv2d used in StyleGAN2.
26
+
27
+ There is no bias in ModulatedConv2d.
28
+
29
+ Args:
30
+ in_channels (int): Channel number of the input.
31
+ out_channels (int): Channel number of the output.
32
+ kernel_size (int): Size of the convolving kernel.
33
+ num_style_feat (int): Channel number of style features.
34
+ demodulate (bool): Whether to demodulate in the conv layer. Default: True.
35
+ sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None.
36
+ eps (float): A value added to the denominator for numerical stability. Default: 1e-8.
37
+ """
38
+
39
+ def __init__(self,
40
+ in_channels,
41
+ out_channels,
42
+ kernel_size,
43
+ num_style_feat,
44
+ demodulate=True,
45
+ sample_mode=None,
46
+ eps=1e-8):
47
+ super(ModulatedConv2d, self).__init__()
48
+ self.in_channels = in_channels
49
+ self.out_channels = out_channels
50
+ self.kernel_size = kernel_size
51
+ self.demodulate = demodulate
52
+ self.sample_mode = sample_mode
53
+ self.eps = eps
54
+
55
+ # modulation inside each modulated conv
56
+ self.modulation = nn.Linear(num_style_feat, in_channels, bias=True)
57
+ # initialization
58
+ default_init_weights(self.modulation, scale=1, bias_fill=1, a=0, mode='fan_in', nonlinearity='linear')
59
+
60
+ self.weight = nn.Parameter(
61
+ torch.randn(1, out_channels, in_channels, kernel_size, kernel_size) /
62
+ math.sqrt(in_channels * kernel_size**2))
63
+ self.padding = kernel_size // 2
64
+
65
+ def forward(self, x, style):
66
+ """Forward function.
67
+
68
+ Args:
69
+ x (Tensor): Tensor with shape (b, c, h, w).
70
+ style (Tensor): Tensor with shape (b, num_style_feat).
71
+
72
+ Returns:
73
+ Tensor: Modulated tensor after convolution.
74
+ """
75
+ b, c, h, w = x.shape # c = c_in
76
+ # weight modulation
77
+ style = self.modulation(style).view(b, 1, c, 1, 1)
78
+ # self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1)
79
+ weight = self.weight * style # (b, c_out, c_in, k, k)
80
+
81
+ if self.demodulate:
82
+ demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
83
+ weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
84
+
85
+ weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size)
86
+
87
+ # upsample or downsample if necessary
88
+ if self.sample_mode == 'upsample':
89
+ x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
90
+ elif self.sample_mode == 'downsample':
91
+ x = F.interpolate(x, scale_factor=0.5, mode='bilinear', align_corners=False)
92
+
93
+ b, c, h, w = x.shape
94
+ x = x.view(1, b * c, h, w)
95
+ # weight: (b*c_out, c_in, k, k), groups=b
96
+ out = F.conv2d(x, weight, padding=self.padding, groups=b)
97
+ out = out.view(b, self.out_channels, *out.shape[2:4])
98
+
99
+ return out
100
+
101
+ def __repr__(self):
102
+ return (f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, '
103
+ f'kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})')
104
+
105
+
106
+ class StyleConv(nn.Module):
107
+ """Style conv used in StyleGAN2.
108
+
109
+ Args:
110
+ in_channels (int): Channel number of the input.
111
+ out_channels (int): Channel number of the output.
112
+ kernel_size (int): Size of the convolving kernel.
113
+ num_style_feat (int): Channel number of style features.
114
+ demodulate (bool): Whether demodulate in the conv layer. Default: True.
115
+ sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None.
116
+ """
117
+
118
+ def __init__(self, in_channels, out_channels, kernel_size, num_style_feat, demodulate=True, sample_mode=None):
119
+ super(StyleConv, self).__init__()
120
+ self.modulated_conv = ModulatedConv2d(
121
+ in_channels, out_channels, kernel_size, num_style_feat, demodulate=demodulate, sample_mode=sample_mode)
122
+ self.weight = nn.Parameter(torch.zeros(1)) # for noise injection
123
+ self.bias = nn.Parameter(torch.zeros(1, out_channels, 1, 1))
124
+ self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
125
+
126
+ def forward(self, x, style, noise=None):
127
+ # modulate
128
+ out = self.modulated_conv(x, style) * 2**0.5 # for conversion
129
+ # noise injection
130
+ if noise is None:
131
+ b, _, h, w = out.shape
132
+ noise = out.new_empty(b, 1, h, w).normal_()
133
+ out = out + self.weight * noise
134
+ # add bias
135
+ out = out + self.bias
136
+ # activation
137
+ out = self.activate(out)
138
+ return out
139
+
140
+
141
+ class ToRGB(nn.Module):
142
+ """To RGB (image space) from features.
143
+
144
+ Args:
145
+ in_channels (int): Channel number of input.
146
+ num_style_feat (int): Channel number of style features.
147
+ upsample (bool): Whether to upsample. Default: True.
148
+ """
149
+
150
+ def __init__(self, in_channels, num_style_feat, upsample=True):
151
+ super(ToRGB, self).__init__()
152
+ self.upsample = upsample
153
+ self.modulated_conv = ModulatedConv2d(
154
+ in_channels, 3, kernel_size=1, num_style_feat=num_style_feat, demodulate=False, sample_mode=None)
155
+ self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
156
+
157
+ def forward(self, x, style, skip=None):
158
+ """Forward function.
159
+
160
+ Args:
161
+ x (Tensor): Feature tensor with shape (b, c, h, w).
162
+ style (Tensor): Tensor with shape (b, num_style_feat).
163
+ skip (Tensor): Base/skip tensor. Default: None.
164
+
165
+ Returns:
166
+ Tensor: RGB images.
167
+ """
168
+ out = self.modulated_conv(x, style)
169
+ out = out + self.bias
170
+ if skip is not None:
171
+ if self.upsample:
172
+ skip = F.interpolate(skip, scale_factor=2, mode='bilinear', align_corners=False)
173
+ out = out + skip
174
+ return out
175
+
176
+
177
+ class ConstantInput(nn.Module):
178
+ """Constant input.
179
+
180
+ Args:
181
+ num_channel (int): Channel number of constant input.
182
+ size (int): Spatial size of constant input.
183
+ """
184
+
185
+ def __init__(self, num_channel, size):
186
+ super(ConstantInput, self).__init__()
187
+ self.weight = nn.Parameter(torch.randn(1, num_channel, size, size))
188
+
189
+ def forward(self, batch):
190
+ out = self.weight.repeat(batch, 1, 1, 1)
191
+ return out
192
+
193
+
194
+ @ARCH_REGISTRY.register()
195
+ class StyleGAN2GeneratorClean(nn.Module):
196
+ """Clean version of StyleGAN2 Generator.
197
+
198
+ Args:
199
+ out_size (int): The spatial size of outputs.
200
+ num_style_feat (int): Channel number of style features. Default: 512.
201
+ num_mlp (int): Layer number of MLP style layers. Default: 8.
202
+ channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
203
+ narrow (float): Narrow ratio for channels. Default: 1.0.
204
+ """
205
+
206
+ def __init__(self, out_size, num_style_feat=512, num_mlp=8, channel_multiplier=2, narrow=1):
207
+ super(StyleGAN2GeneratorClean, self).__init__()
208
+ # Style MLP layers
209
+ self.num_style_feat = num_style_feat
210
+ style_mlp_layers = [NormStyleCode()]
211
+ for i in range(num_mlp):
212
+ style_mlp_layers.extend(
213
+ [nn.Linear(num_style_feat, num_style_feat, bias=True),
214
+ nn.LeakyReLU(negative_slope=0.2, inplace=True)])
215
+ self.style_mlp = nn.Sequential(*style_mlp_layers)
216
+ # initialization
217
+ default_init_weights(self.style_mlp, scale=1, bias_fill=0, a=0.2, mode='fan_in', nonlinearity='leaky_relu')
218
+
219
+ # channel list
220
+ channels = {
221
+ '4': int(512 * narrow),
222
+ '8': int(512 * narrow),
223
+ '16': int(512 * narrow),
224
+ '32': int(512 * narrow),
225
+ '64': int(256 * channel_multiplier * narrow),
226
+ '128': int(128 * channel_multiplier * narrow),
227
+ '256': int(64 * channel_multiplier * narrow),
228
+ '512': int(32 * channel_multiplier * narrow),
229
+ '1024': int(16 * channel_multiplier * narrow)
230
+ }
231
+ self.channels = channels
232
+
233
+ self.constant_input = ConstantInput(channels['4'], size=4)
234
+ self.style_conv1 = StyleConv(
235
+ channels['4'],
236
+ channels['4'],
237
+ kernel_size=3,
238
+ num_style_feat=num_style_feat,
239
+ demodulate=True,
240
+ sample_mode=None)
241
+ self.to_rgb1 = ToRGB(channels['4'], num_style_feat, upsample=False)
242
+
243
+ self.log_size = int(math.log(out_size, 2))
244
+ self.num_layers = (self.log_size - 2) * 2 + 1
245
+ self.num_latent = self.log_size * 2 - 2
246
+
247
+ self.style_convs = nn.ModuleList()
248
+ self.to_rgbs = nn.ModuleList()
249
+ self.noises = nn.Module()
250
+
251
+ in_channels = channels['4']
252
+ # noise
253
+ for layer_idx in range(self.num_layers):
254
+ resolution = 2**((layer_idx + 5) // 2)
255
+ shape = [1, 1, resolution, resolution]
256
+ self.noises.register_buffer(f'noise{layer_idx}', torch.randn(*shape))
257
+ # style convs and to_rgbs
258
+ for i in range(3, self.log_size + 1):
259
+ out_channels = channels[f'{2**i}']
260
+ self.style_convs.append(
261
+ StyleConv(
262
+ in_channels,
263
+ out_channels,
264
+ kernel_size=3,
265
+ num_style_feat=num_style_feat,
266
+ demodulate=True,
267
+ sample_mode='upsample'))
268
+ self.style_convs.append(
269
+ StyleConv(
270
+ out_channels,
271
+ out_channels,
272
+ kernel_size=3,
273
+ num_style_feat=num_style_feat,
274
+ demodulate=True,
275
+ sample_mode=None))
276
+ self.to_rgbs.append(ToRGB(out_channels, num_style_feat, upsample=True))
277
+ in_channels = out_channels
278
+
279
+ def make_noise(self):
280
+ """Make noise for noise injection."""
281
+ device = self.constant_input.weight.device
282
+ noises = [torch.randn(1, 1, 4, 4, device=device)]
283
+
284
+ for i in range(3, self.log_size + 1):
285
+ for _ in range(2):
286
+ noises.append(torch.randn(1, 1, 2**i, 2**i, device=device))
287
+
288
+ return noises
289
+
290
+ def get_latent(self, x):
291
+ return self.style_mlp(x)
292
+
293
+ def mean_latent(self, num_latent):
294
+ latent_in = torch.randn(num_latent, self.num_style_feat, device=self.constant_input.weight.device)
295
+ latent = self.style_mlp(latent_in).mean(0, keepdim=True)
296
+ return latent
297
+
298
+ def forward(self,
299
+ styles,
300
+ input_is_latent=False,
301
+ noise=None,
302
+ randomize_noise=True,
303
+ truncation=1,
304
+ truncation_latent=None,
305
+ inject_index=None,
306
+ return_latents=False):
307
+ """Forward function for StyleGAN2GeneratorClean.
308
+
309
+ Args:
310
+ styles (list[Tensor]): Sample codes of styles.
311
+ input_is_latent (bool): Whether input is latent style. Default: False.
312
+ noise (Tensor | None): Input noise or None. Default: None.
313
+ randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
314
+ truncation (float): The truncation ratio. Default: 1.
315
+ truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
316
+ inject_index (int | None): The injection index for mixing noise. Default: None.
317
+ return_latents (bool): Whether to return style latents. Default: False.
318
+ """
319
+ # style codes -> latents with Style MLP layer
320
+ if not input_is_latent:
321
+ styles = [self.style_mlp(s) for s in styles]
322
+ # noises
323
+ if noise is None:
324
+ if randomize_noise:
325
+ noise = [None] * self.num_layers # for each style conv layer
326
+ else: # use the stored noise
327
+ noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
328
+ # style truncation
329
+ if truncation < 1:
330
+ style_truncation = []
331
+ for style in styles:
332
+ style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
333
+ styles = style_truncation
334
+ # get style latents with injection
335
+ if len(styles) == 1:
336
+ inject_index = self.num_latent
337
+
338
+ if styles[0].ndim < 3:
339
+ # repeat latent code for all the layers
340
+ latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
341
+ else: # used for encoder with different latent code for each layer
342
+ latent = styles[0]
343
+ elif len(styles) == 2: # mixing noises
344
+ if inject_index is None:
345
+ inject_index = random.randint(1, self.num_latent - 1)
346
+ latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
347
+ latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
348
+ latent = torch.cat([latent1, latent2], 1)
349
+
350
+ # main generation
351
+ out = self.constant_input(latent.shape[0])
352
+ out = self.style_conv1(out, latent[:, 0], noise=noise[0])
353
+ skip = self.to_rgb1(out, latent[:, 1])
354
+
355
+ i = 1
356
+ for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
357
+ noise[2::2], self.to_rgbs):
358
+ out = conv1(out, latent[:, i], noise=noise1)
359
+ out = conv2(out, latent[:, i + 1], noise=noise2)
360
+ skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space
361
+ i += 2
362
+
363
+ image = skip
364
+
365
+ if return_latents:
366
+ return image, latent
367
+ else:
368
+ return image, None
gfpgan/data/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ from basicsr.utils import scandir
3
+ from os import path as osp
4
+
5
+ # automatically scan and import dataset modules for registry
6
+ # scan all the files that end with '_dataset.py' under the data folder
7
+ data_folder = osp.dirname(osp.abspath(__file__))
8
+ dataset_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(data_folder) if v.endswith('_dataset.py')]
9
+ # import all the dataset modules
10
+ _dataset_modules = [importlib.import_module(f'gfpgan.data.{file_name}') for file_name in dataset_filenames]
gfpgan/data/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (714 Bytes). View file
 
gfpgan/data/__pycache__/__init__.cpython-37.pyc ADDED
Binary file (721 Bytes). View file
 
gfpgan/data/__pycache__/ffhq_degradation_dataset.cpython-310.pyc ADDED
Binary file (7.16 kB). View file
 
gfpgan/data/__pycache__/ffhq_degradation_dataset.cpython-37.pyc ADDED
Binary file (7.13 kB). View file
 
gfpgan/data/ffhq_degradation_dataset.py ADDED
@@ -0,0 +1,230 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import math
3
+ import numpy as np
4
+ import os.path as osp
5
+ import torch
6
+ import torch.utils.data as data
7
+ from basicsr.data import degradations as degradations
8
+ from basicsr.data.data_util import paths_from_folder
9
+ from basicsr.data.transforms import augment
10
+ from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
11
+ from basicsr.utils.registry import DATASET_REGISTRY
12
+ from torchvision.transforms.functional import (adjust_brightness, adjust_contrast, adjust_hue, adjust_saturation,
13
+ normalize)
14
+
15
+
16
+ @DATASET_REGISTRY.register()
17
+ class FFHQDegradationDataset(data.Dataset):
18
+ """FFHQ dataset for GFPGAN.
19
+
20
+ It reads high resolution images, and then generate low-quality (LQ) images on-the-fly.
21
+
22
+ Args:
23
+ opt (dict): Config for train datasets. It contains the following keys:
24
+ dataroot_gt (str): Data root path for gt.
25
+ io_backend (dict): IO backend type and other kwarg.
26
+ mean (list | tuple): Image mean.
27
+ std (list | tuple): Image std.
28
+ use_hflip (bool): Whether to horizontally flip.
29
+ Please see more options in the codes.
30
+ """
31
+
32
+ def __init__(self, opt):
33
+ super(FFHQDegradationDataset, self).__init__()
34
+ self.opt = opt
35
+ # file client (io backend)
36
+ self.file_client = None
37
+ self.io_backend_opt = opt['io_backend']
38
+
39
+ self.gt_folder = opt['dataroot_gt']
40
+ self.mean = opt['mean']
41
+ self.std = opt['std']
42
+ self.out_size = opt['out_size']
43
+
44
+ self.crop_components = opt.get('crop_components', False) # facial components
45
+ self.eye_enlarge_ratio = opt.get('eye_enlarge_ratio', 1) # whether enlarge eye regions
46
+
47
+ if self.crop_components:
48
+ # load component list from a pre-process pth files
49
+ self.components_list = torch.load(opt.get('component_path'))
50
+
51
+ # file client (lmdb io backend)
52
+ if self.io_backend_opt['type'] == 'lmdb':
53
+ self.io_backend_opt['db_paths'] = self.gt_folder
54
+ if not self.gt_folder.endswith('.lmdb'):
55
+ raise ValueError(f"'dataroot_gt' should end with '.lmdb', but received {self.gt_folder}")
56
+ with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin:
57
+ self.paths = [line.split('.')[0] for line in fin]
58
+ else:
59
+ # disk backend: scan file list from a folder
60
+ self.paths = paths_from_folder(self.gt_folder)
61
+
62
+ # degradation configurations
63
+ self.blur_kernel_size = opt['blur_kernel_size']
64
+ self.kernel_list = opt['kernel_list']
65
+ self.kernel_prob = opt['kernel_prob']
66
+ self.blur_sigma = opt['blur_sigma']
67
+ self.downsample_range = opt['downsample_range']
68
+ self.noise_range = opt['noise_range']
69
+ self.jpeg_range = opt['jpeg_range']
70
+
71
+ # color jitter
72
+ self.color_jitter_prob = opt.get('color_jitter_prob')
73
+ self.color_jitter_pt_prob = opt.get('color_jitter_pt_prob')
74
+ self.color_jitter_shift = opt.get('color_jitter_shift', 20)
75
+ # to gray
76
+ self.gray_prob = opt.get('gray_prob')
77
+
78
+ logger = get_root_logger()
79
+ logger.info(f'Blur: blur_kernel_size {self.blur_kernel_size}, sigma: [{", ".join(map(str, self.blur_sigma))}]')
80
+ logger.info(f'Downsample: downsample_range [{", ".join(map(str, self.downsample_range))}]')
81
+ logger.info(f'Noise: [{", ".join(map(str, self.noise_range))}]')
82
+ logger.info(f'JPEG compression: [{", ".join(map(str, self.jpeg_range))}]')
83
+
84
+ if self.color_jitter_prob is not None:
85
+ logger.info(f'Use random color jitter. Prob: {self.color_jitter_prob}, shift: {self.color_jitter_shift}')
86
+ if self.gray_prob is not None:
87
+ logger.info(f'Use random gray. Prob: {self.gray_prob}')
88
+ self.color_jitter_shift /= 255.
89
+
90
+ @staticmethod
91
+ def color_jitter(img, shift):
92
+ """jitter color: randomly jitter the RGB values, in numpy formats"""
93
+ jitter_val = np.random.uniform(-shift, shift, 3).astype(np.float32)
94
+ img = img + jitter_val
95
+ img = np.clip(img, 0, 1)
96
+ return img
97
+
98
+ @staticmethod
99
+ def color_jitter_pt(img, brightness, contrast, saturation, hue):
100
+ """jitter color: randomly jitter the brightness, contrast, saturation, and hue, in torch Tensor formats"""
101
+ fn_idx = torch.randperm(4)
102
+ for fn_id in fn_idx:
103
+ if fn_id == 0 and brightness is not None:
104
+ brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item()
105
+ img = adjust_brightness(img, brightness_factor)
106
+
107
+ if fn_id == 1 and contrast is not None:
108
+ contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item()
109
+ img = adjust_contrast(img, contrast_factor)
110
+
111
+ if fn_id == 2 and saturation is not None:
112
+ saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item()
113
+ img = adjust_saturation(img, saturation_factor)
114
+
115
+ if fn_id == 3 and hue is not None:
116
+ hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item()
117
+ img = adjust_hue(img, hue_factor)
118
+ return img
119
+
120
+ def get_component_coordinates(self, index, status):
121
+ """Get facial component (left_eye, right_eye, mouth) coordinates from a pre-loaded pth file"""
122
+ components_bbox = self.components_list[f'{index:08d}']
123
+ if status[0]: # hflip
124
+ # exchange right and left eye
125
+ tmp = components_bbox['left_eye']
126
+ components_bbox['left_eye'] = components_bbox['right_eye']
127
+ components_bbox['right_eye'] = tmp
128
+ # modify the width coordinate
129
+ components_bbox['left_eye'][0] = self.out_size - components_bbox['left_eye'][0]
130
+ components_bbox['right_eye'][0] = self.out_size - components_bbox['right_eye'][0]
131
+ components_bbox['mouth'][0] = self.out_size - components_bbox['mouth'][0]
132
+
133
+ # get coordinates
134
+ locations = []
135
+ for part in ['left_eye', 'right_eye', 'mouth']:
136
+ mean = components_bbox[part][0:2]
137
+ half_len = components_bbox[part][2]
138
+ if 'eye' in part:
139
+ half_len *= self.eye_enlarge_ratio
140
+ loc = np.hstack((mean - half_len + 1, mean + half_len))
141
+ loc = torch.from_numpy(loc).float()
142
+ locations.append(loc)
143
+ return locations
144
+
145
+ def __getitem__(self, index):
146
+ if self.file_client is None:
147
+ self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
148
+
149
+ # load gt image
150
+ # Shape: (h, w, c); channel order: BGR; image range: [0, 1], float32.
151
+ gt_path = self.paths[index]
152
+ img_bytes = self.file_client.get(gt_path)
153
+ img_gt = imfrombytes(img_bytes, float32=True)
154
+
155
+ # random horizontal flip
156
+ img_gt, status = augment(img_gt, hflip=self.opt['use_hflip'], rotation=False, return_status=True)
157
+ h, w, _ = img_gt.shape
158
+
159
+ # get facial component coordinates
160
+ if self.crop_components:
161
+ locations = self.get_component_coordinates(index, status)
162
+ loc_left_eye, loc_right_eye, loc_mouth = locations
163
+
164
+ # ------------------------ generate lq image ------------------------ #
165
+ # blur
166
+ kernel = degradations.random_mixed_kernels(
167
+ self.kernel_list,
168
+ self.kernel_prob,
169
+ self.blur_kernel_size,
170
+ self.blur_sigma,
171
+ self.blur_sigma, [-math.pi, math.pi],
172
+ noise_range=None)
173
+ img_lq = cv2.filter2D(img_gt, -1, kernel)
174
+ # downsample
175
+ scale = np.random.uniform(self.downsample_range[0], self.downsample_range[1])
176
+ img_lq = cv2.resize(img_lq, (int(w // scale), int(h // scale)), interpolation=cv2.INTER_LINEAR)
177
+ # noise
178
+ if self.noise_range is not None:
179
+ img_lq = degradations.random_add_gaussian_noise(img_lq, self.noise_range)
180
+ # jpeg compression
181
+ if self.jpeg_range is not None:
182
+ img_lq = degradations.random_add_jpg_compression(img_lq, self.jpeg_range)
183
+
184
+ # resize to original size
185
+ img_lq = cv2.resize(img_lq, (w, h), interpolation=cv2.INTER_LINEAR)
186
+
187
+ # random color jitter (only for lq)
188
+ if self.color_jitter_prob is not None and (np.random.uniform() < self.color_jitter_prob):
189
+ img_lq = self.color_jitter(img_lq, self.color_jitter_shift)
190
+ # random to gray (only for lq)
191
+ if self.gray_prob and np.random.uniform() < self.gray_prob:
192
+ img_lq = cv2.cvtColor(img_lq, cv2.COLOR_BGR2GRAY)
193
+ img_lq = np.tile(img_lq[:, :, None], [1, 1, 3])
194
+ if self.opt.get('gt_gray'): # whether convert GT to gray images
195
+ img_gt = cv2.cvtColor(img_gt, cv2.COLOR_BGR2GRAY)
196
+ img_gt = np.tile(img_gt[:, :, None], [1, 1, 3]) # repeat the color channels
197
+
198
+ # BGR to RGB, HWC to CHW, numpy to tensor
199
+ img_gt, img_lq = img2tensor([img_gt, img_lq], bgr2rgb=True, float32=True)
200
+
201
+ # random color jitter (pytorch version) (only for lq)
202
+ if self.color_jitter_pt_prob is not None and (np.random.uniform() < self.color_jitter_pt_prob):
203
+ brightness = self.opt.get('brightness', (0.5, 1.5))
204
+ contrast = self.opt.get('contrast', (0.5, 1.5))
205
+ saturation = self.opt.get('saturation', (0, 1.5))
206
+ hue = self.opt.get('hue', (-0.1, 0.1))
207
+ img_lq = self.color_jitter_pt(img_lq, brightness, contrast, saturation, hue)
208
+
209
+ # round and clip
210
+ img_lq = torch.clamp((img_lq * 255.0).round(), 0, 255) / 255.
211
+
212
+ # normalize
213
+ normalize(img_gt, self.mean, self.std, inplace=True)
214
+ normalize(img_lq, self.mean, self.std, inplace=True)
215
+
216
+ if self.crop_components:
217
+ return_dict = {
218
+ 'lq': img_lq,
219
+ 'gt': img_gt,
220
+ 'gt_path': gt_path,
221
+ 'loc_left_eye': loc_left_eye,
222
+ 'loc_right_eye': loc_right_eye,
223
+ 'loc_mouth': loc_mouth
224
+ }
225
+ return return_dict
226
+ else:
227
+ return {'lq': img_lq, 'gt': img_gt, 'gt_path': gt_path}
228
+
229
+ def __len__(self):
230
+ return len(self.paths)
gfpgan/models/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ from basicsr.utils import scandir
3
+ from os import path as osp
4
+
5
+ # automatically scan and import model modules for registry
6
+ # scan all the files that end with '_model.py' under the model folder
7
+ model_folder = osp.dirname(osp.abspath(__file__))
8
+ model_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(model_folder) if v.endswith('_model.py')]
9
+ # import all the model modules
10
+ _model_modules = [importlib.import_module(f'gfpgan.models.{file_name}') for file_name in model_filenames]
gfpgan/models/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (713 Bytes). View file
 
gfpgan/models/__pycache__/__init__.cpython-37.pyc ADDED
Binary file (720 Bytes). View file
 
gfpgan/models/__pycache__/gfpgan_model.cpython-310.pyc ADDED
Binary file (14.2 kB). View file