Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +12 -12
- requirements.txt +1 -2
app.py
CHANGED
@@ -18,7 +18,7 @@ output_column_names = [
|
|
18 |
"poster_url",
|
19 |
"trailer_url",
|
20 |
]
|
21 |
-
|
22 |
st.set_page_config(layout="wide")
|
23 |
|
24 |
colored_header(
|
@@ -59,7 +59,7 @@ def top_n_retriever(titles, similarity_scores, n, query_type):
|
|
59 |
and the type of query (search engine or similar movies). It then returns the top n results
|
60 |
|
61 |
Args:
|
62 |
-
titles (
|
63 |
similarity_scores (ndarray): The cosine similarity scores of the query movie with all the movies
|
64 |
in the dataset.
|
65 |
n (int): The number of results to return
|
@@ -102,15 +102,15 @@ def grid_maker(movie_recs, df):
|
|
102 |
unsafe_allow_html=True,
|
103 |
)
|
104 |
|
105 |
-
title_col.markdown(
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
f""" <span style="background-color:rgba(0, 0, 0, 0.1);">{stars}</span>
|
110 |
<span style="word-wrap:break-word;font-family:roboto;font-weight: 700;">
|
111 |
-
<br>{summary}</span>
|
112 |
-
|
113 |
-
|
|
|
114 |
|
115 |
|
116 |
def filter_df(df, selected_page):
|
@@ -202,7 +202,7 @@ if selected_page == "Search Engine":
|
|
202 |
movie_recs = top_n_retriever(
|
203 |
genre_df.title, semantic_sims, top_n, selected_page
|
204 |
)
|
205 |
-
add_vertical_space(
|
206 |
grid_maker(movie_recs, genre_df)
|
207 |
|
208 |
|
@@ -219,5 +219,5 @@ if selected_page == "Similar Movies":
|
|
219 |
for movie_embed in genre_df.embedding
|
220 |
]
|
221 |
movie_recs = top_n_retriever(genre_df.title, movie_sims, top_n, selected_page)
|
222 |
-
add_vertical_space(
|
223 |
grid_maker(movie_recs, genre_df)
|
|
|
18 |
"poster_url",
|
19 |
"trailer_url",
|
20 |
]
|
21 |
+
vertical_space = 2
|
22 |
st.set_page_config(layout="wide")
|
23 |
|
24 |
colored_header(
|
|
|
59 |
and the type of query (search engine or similar movies). It then returns the top n results
|
60 |
|
61 |
Args:
|
62 |
+
titles (list[str]): List of movie titles
|
63 |
similarity_scores (ndarray): The cosine similarity scores of the query movie with all the movies
|
64 |
in the dataset.
|
65 |
n (int): The number of results to return
|
|
|
102 |
unsafe_allow_html=True,
|
103 |
)
|
104 |
|
105 |
+
title_col.markdown(f"""<p>
|
106 |
+
<span style=color:#0068C9;font-style:bold;font-size:28px;>{movie} </span>
|
107 |
+
<span style=color:grey;font-style:italic;font-size:14px;> {year} | {duration} | {genre}</span>
|
108 |
+
<span style="background-color:rgba(0, 0, 0, 0.1);"><br>{stars}</span>
|
|
|
109 |
<span style="word-wrap:break-word;font-family:roboto;font-weight: 700;">
|
110 |
+
<br>{summary}</span>
|
111 |
+
</p>
|
112 |
+
""", unsafe_allow_html=True)
|
113 |
+
add_vertical_space(vertical_space)
|
114 |
|
115 |
|
116 |
def filter_df(df, selected_page):
|
|
|
202 |
movie_recs = top_n_retriever(
|
203 |
genre_df.title, semantic_sims, top_n, selected_page
|
204 |
)
|
205 |
+
add_vertical_space(vertical_space)
|
206 |
grid_maker(movie_recs, genre_df)
|
207 |
|
208 |
|
|
|
219 |
for movie_embed in genre_df.embedding
|
220 |
]
|
221 |
movie_recs = top_n_retriever(genre_df.title, movie_sims, top_n, selected_page)
|
222 |
+
add_vertical_space(vertical_space)
|
223 |
grid_maker(movie_recs, genre_df)
|
requirements.txt
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
--find-links https://download.pytorch.org/whl/torch_stable.html
|
2 |
torch==1.13.1+cpu
|
3 |
sentence-transformers
|
4 |
-
pandas
|
5 |
-
streamlit==1.16.0
|
6 |
streamlit-option-menu
|
7 |
streamlit-extras
|
|
|
1 |
--find-links https://download.pytorch.org/whl/torch_stable.html
|
2 |
torch==1.13.1+cpu
|
3 |
sentence-transformers
|
4 |
+
pandas
|
|
|
5 |
streamlit-option-menu
|
6 |
streamlit-extras
|