remzicam commited on
Commit
d677582
·
1 Parent(s): 5f3cc06

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +12 -12
  2. requirements.txt +1 -2
app.py CHANGED
@@ -18,7 +18,7 @@ output_column_names = [
18
  "poster_url",
19
  "trailer_url",
20
  ]
21
-
22
  st.set_page_config(layout="wide")
23
 
24
  colored_header(
@@ -59,7 +59,7 @@ def top_n_retriever(titles, similarity_scores, n, query_type):
59
  and the type of query (search engine or similar movies). It then returns the top n results
60
 
61
  Args:
62
- titles (List[str]): List of movie titles
63
  similarity_scores (ndarray): The cosine similarity scores of the query movie with all the movies
64
  in the dataset.
65
  n (int): The number of results to return
@@ -102,15 +102,15 @@ def grid_maker(movie_recs, df):
102
  unsafe_allow_html=True,
103
  )
104
 
105
- title_col.markdown(
106
- f""" #### **:blue[{movie}]** | {year} | {duration} | {genre} """
107
- )
108
- title_col.markdown(
109
- f""" <span style="background-color:rgba(0, 0, 0, 0.1);">{stars}</span>
110
  <span style="word-wrap:break-word;font-family:roboto;font-weight: 700;">
111
- <br>{summary}</span>""",
112
- unsafe_allow_html=True,
113
- )
 
114
 
115
 
116
  def filter_df(df, selected_page):
@@ -202,7 +202,7 @@ if selected_page == "Search Engine":
202
  movie_recs = top_n_retriever(
203
  genre_df.title, semantic_sims, top_n, selected_page
204
  )
205
- add_vertical_space(2)
206
  grid_maker(movie_recs, genre_df)
207
 
208
 
@@ -219,5 +219,5 @@ if selected_page == "Similar Movies":
219
  for movie_embed in genre_df.embedding
220
  ]
221
  movie_recs = top_n_retriever(genre_df.title, movie_sims, top_n, selected_page)
222
- add_vertical_space(2)
223
  grid_maker(movie_recs, genre_df)
 
18
  "poster_url",
19
  "trailer_url",
20
  ]
21
+ vertical_space = 2
22
  st.set_page_config(layout="wide")
23
 
24
  colored_header(
 
59
  and the type of query (search engine or similar movies). It then returns the top n results
60
 
61
  Args:
62
+ titles (list[str]): List of movie titles
63
  similarity_scores (ndarray): The cosine similarity scores of the query movie with all the movies
64
  in the dataset.
65
  n (int): The number of results to return
 
102
  unsafe_allow_html=True,
103
  )
104
 
105
+ title_col.markdown(f"""<p>
106
+ <span style=color:#0068C9;font-style:bold;font-size:28px;>{movie} </span>
107
+ <span style=color:grey;font-style:italic;font-size:14px;> {year} | {duration} | {genre}</span>
108
+ <span style="background-color:rgba(0, 0, 0, 0.1);"><br>{stars}</span>
 
109
  <span style="word-wrap:break-word;font-family:roboto;font-weight: 700;">
110
+ <br>{summary}</span>
111
+ </p>
112
+ """, unsafe_allow_html=True)
113
+ add_vertical_space(vertical_space)
114
 
115
 
116
  def filter_df(df, selected_page):
 
202
  movie_recs = top_n_retriever(
203
  genre_df.title, semantic_sims, top_n, selected_page
204
  )
205
+ add_vertical_space(vertical_space)
206
  grid_maker(movie_recs, genre_df)
207
 
208
 
 
219
  for movie_embed in genre_df.embedding
220
  ]
221
  movie_recs = top_n_retriever(genre_df.title, movie_sims, top_n, selected_page)
222
+ add_vertical_space(vertical_space)
223
  grid_maker(movie_recs, genre_df)
requirements.txt CHANGED
@@ -1,7 +1,6 @@
1
  --find-links https://download.pytorch.org/whl/torch_stable.html
2
  torch==1.13.1+cpu
3
  sentence-transformers
4
- pandas
5
- streamlit==1.16.0
6
  streamlit-option-menu
7
  streamlit-extras
 
1
  --find-links https://download.pytorch.org/whl/torch_stable.html
2
  torch==1.13.1+cpu
3
  sentence-transformers
4
+ pandas
 
5
  streamlit-option-menu
6
  streamlit-extras