Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -44,32 +44,47 @@ def load_model(model_id):
|
|
| 44 |
logger.info(f"Loading model {model_id}...")
|
| 45 |
try:
|
| 46 |
if model_id == "ssd-1b":
|
| 47 |
-
#
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
)
|
| 63 |
-
)
|
| 64 |
-
# Load pipeline with patched UNet
|
| 65 |
-
pipe = StableDiffusionPipeline.from_pretrained(
|
| 66 |
-
model_paths[model_id],
|
| 67 |
-
unet=unet,
|
| 68 |
-
torch_dtype=torch.float32,
|
| 69 |
-
use_auth_token=os.getenv("HF_TOKEN"),
|
| 70 |
-
use_safetensors=True,
|
| 71 |
-
low_cpu_mem_usage=True
|
| 72 |
-
)
|
| 73 |
else:
|
| 74 |
# Standard loading for sd-v1-5
|
| 75 |
pipe = StableDiffusionPipeline.from_pretrained(
|
|
@@ -77,7 +92,8 @@ def load_model(model_id):
|
|
| 77 |
torch_dtype=torch.float32,
|
| 78 |
use_auth_token=os.getenv("HF_TOKEN"),
|
| 79 |
use_safetensors=True,
|
| 80 |
-
low_cpu_mem_usage=True
|
|
|
|
| 81 |
)
|
| 82 |
logger.info(f"Pipeline components loading for {model_id}...")
|
| 83 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
|
@@ -123,7 +139,7 @@ def generate():
|
|
| 123 |
pipe.to(torch.device("cpu"))
|
| 124 |
|
| 125 |
images = []
|
| 126 |
-
num_inference_steps =
|
| 127 |
for _ in range(num_images):
|
| 128 |
image = pipe(
|
| 129 |
prompt=prompt,
|
|
|
|
| 44 |
logger.info(f"Loading model {model_id}...")
|
| 45 |
try:
|
| 46 |
if model_id == "ssd-1b":
|
| 47 |
+
# Try loading UNet from xet/unet
|
| 48 |
+
try:
|
| 49 |
+
logger.info(f"Preloading UNet for {model_id} from {model_paths[model_id]}/xet/unet")
|
| 50 |
+
unet_config = UNet2DConditionModel.load_config(
|
| 51 |
+
f"{model_paths[model_id]}/xet/unet",
|
| 52 |
+
use_auth_token=os.getenv("HF_TOKEN"),
|
| 53 |
+
force_download=True
|
| 54 |
+
)
|
| 55 |
+
if "reverse_transformer_layers_per_block" in unet_config:
|
| 56 |
+
logger.info(f"Original UNet config for {model_id}: {unet_config}")
|
| 57 |
+
unet_config["reverse_transformer_layers_per_block"] = None
|
| 58 |
+
logger.info(f"Patched UNet config for {model_id}: {unet_config}")
|
| 59 |
+
unet = UNet2DConditionModel.from_config(unet_config)
|
| 60 |
+
unet.load_state_dict(
|
| 61 |
+
torch.load(
|
| 62 |
+
f"{model_paths[model_id]}/xet/unet/diffusion_pytorch_model.bin",
|
| 63 |
+
map_location="cpu"
|
| 64 |
+
)
|
| 65 |
+
)
|
| 66 |
+
# Load pipeline with patched UNet
|
| 67 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 68 |
+
model_paths[model_id],
|
| 69 |
+
unet=unet,
|
| 70 |
+
torch_dtype=torch.float32,
|
| 71 |
+
use_auth_token=os.getenv("HF_TOKEN"),
|
| 72 |
+
use_safetensors=True,
|
| 73 |
+
low_cpu_mem_usage=True,
|
| 74 |
+
force_download=True
|
| 75 |
+
)
|
| 76 |
+
except Exception as e:
|
| 77 |
+
logger.warning(f"Failed to load UNet for {model_id}: {str(e)}")
|
| 78 |
+
logger.info(f"Falling back to standard pipeline loading for {model_id}")
|
| 79 |
+
# Fallback to standard pipeline
|
| 80 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 81 |
+
model_paths[model_id],
|
| 82 |
+
torch_dtype=torch.float32,
|
| 83 |
+
use_auth_token=os.getenv("HF_TOKEN"),
|
| 84 |
+
use_safetensors=True,
|
| 85 |
+
low_cpu_mem_usage=True,
|
| 86 |
+
force_download=True
|
| 87 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
else:
|
| 89 |
# Standard loading for sd-v1-5
|
| 90 |
pipe = StableDiffusionPipeline.from_pretrained(
|
|
|
|
| 92 |
torch_dtype=torch.float32,
|
| 93 |
use_auth_token=os.getenv("HF_TOKEN"),
|
| 94 |
use_safetensors=True,
|
| 95 |
+
low_cpu_mem_usage=True,
|
| 96 |
+
force_download=True
|
| 97 |
)
|
| 98 |
logger.info(f"Pipeline components loading for {model_id}...")
|
| 99 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
|
|
|
| 139 |
pipe.to(torch.device("cpu"))
|
| 140 |
|
| 141 |
images = []
|
| 142 |
+
num_inference_steps = 20 if model_id == 'ssd-1b' else 30
|
| 143 |
for _ in range(num_images):
|
| 144 |
image = pipe(
|
| 145 |
prompt=prompt,
|