kexinhuang12345 commited on
Commit
98a0620
·
1 Parent(s): 215c2d8
Files changed (2) hide show
  1. src/about.py +0 -2
  2. src/populate.py +3 -3
src/about.py CHANGED
@@ -60,7 +60,6 @@ TITLE = """<p align="center"><img src="https://relbench.stanford.edu/img/logo.pn
60
 
61
  # What does your leaderboard evaluate?
62
  INTRODUCTION_TEXT = """
63
- Relational Deep Learning is a new approach for end-to-end representation learning on data spread across multiple tables, such as in a relational database (see our vision paper). RelBench is the accompanying benchmark which seeks to facilitate efficient, robust and reproducible research in this direction. It comprises of a collection of realistic, large-scale, and diverse datasets structured as relational tables, along with machine learning tasks defined on them. It provides full support for data downloading, task specification and standardized evaluation in an ML-framework-agnostic manner. Additionally, there is seamless integration with PyTorch Geometric to load the data as a graph and train GNN models, and with PyTorch Frame to encode the various types of table columns. Finally, there is a leaderboard for tracking progress.
64
  """
65
 
66
  # Which evaluations are you running? how can people reproduce what you have?
@@ -83,7 +82,6 @@ Once you have developed your model and got results, you can submit your test res
83
  - **Validation performance**: Validation performance of the model that is used to report the test performance above.
84
  - **Paper URL Link**: The original paper describing the method (arXiv link is recommended. paper needs not be peer-reviewed). If your method has any original component (e.g., even just combining existing methods XXX and YYY), you have to write a technical report describing it (e.g., how you exactly combined XXX and YYY).
85
  - **GitHub URL Link**: The Github repository or directory containining all code to reproduce the result. A placeholder repository is not allowed.
86
- - **Number of Parameters**: The number of parameters of your model, which can be calculated by sum(p.numel() for p in model.parameters()). If you use multi-stage training (e.g., apply node2vec and then MLP), please sum up all the parameters (both node2vec and MLP parameters).
87
  - **Honor code**: Please acknowledge that your submission adheres to all the ethical policies and your result is reproducible.
88
  """
89
 
 
60
 
61
  # What does your leaderboard evaluate?
62
  INTRODUCTION_TEXT = """
 
63
  """
64
 
65
  # Which evaluations are you running? how can people reproduce what you have?
 
82
  - **Validation performance**: Validation performance of the model that is used to report the test performance above.
83
  - **Paper URL Link**: The original paper describing the method (arXiv link is recommended. paper needs not be peer-reviewed). If your method has any original component (e.g., even just combining existing methods XXX and YYY), you have to write a technical report describing it (e.g., how you exactly combined XXX and YYY).
84
  - **GitHub URL Link**: The Github repository or directory containining all code to reproduce the result. A placeholder repository is not allowed.
 
85
  - **Honor code**: Please acknowledge that your submission adheres to all the ethical policies and your result is reproducible.
86
  """
87
 
src/populate.py CHANGED
@@ -56,7 +56,7 @@ def get_leaderboard_df(EVAL_REQUESTS_PATH, task_type) -> pd.DataFrame:
56
  for model in model_res:
57
  model["test"] = literal_eval(model["test"])
58
  model["valid"] = literal_eval(model["valid"])
59
- model["params"] = int(model["params"])
60
  model['submitted_time'] = model['submitted_time'].split('T')[0]
61
  #model['paper_url'] = '[Link](' + model['paper_url'] + ')'
62
  #model['github_url'] = '[Link](' + model['github_url'] + ')'
@@ -65,7 +65,7 @@ def get_leaderboard_df(EVAL_REQUESTS_PATH, task_type) -> pd.DataFrame:
65
  for model in model_res:
66
  model.update({name2short_name[i]: str(model['test'][i][0])[:4] + '±' + str(model['test'][i][1])[:4] if i in model['test'] else '-' for i in name2short_name})
67
 
68
- columns_to_show = ['model', 'author', 'email', 'paper_url', 'github_url', 'submitted_time', 'params'] + list(name2short_name.values())
69
 
70
  # Check if model_res is empty
71
  if len(model_res) > 0:
@@ -77,7 +77,7 @@ def get_leaderboard_df(EVAL_REQUESTS_PATH, task_type) -> pd.DataFrame:
77
  #df_res = pd.DataFrame([{col: model[col] for col in columns_to_show} for model in model_res])
78
  print(df_res)
79
  ranks = df_res[list(name2short_name.values())].rank(ascending = ascending)
80
- df_res.rename(columns={'model': 'Model', 'author': 'Author', 'email': 'Email', 'paper_url': 'Paper URL', 'github_url': 'Github URL', 'submitted_time': 'Time', 'params': '# of Params'}, inplace=True)
81
  df_res['Average Rank⬆️'] = ranks.mean(axis=1)
82
  df_res.sort_values(by='Average Rank⬆️', ascending=True, inplace=True)
83
  return df_res
 
56
  for model in model_res:
57
  model["test"] = literal_eval(model["test"])
58
  model["valid"] = literal_eval(model["valid"])
59
+ #model["params"] = int(model["params"])
60
  model['submitted_time'] = model['submitted_time'].split('T')[0]
61
  #model['paper_url'] = '[Link](' + model['paper_url'] + ')'
62
  #model['github_url'] = '[Link](' + model['github_url'] + ')'
 
65
  for model in model_res:
66
  model.update({name2short_name[i]: str(model['test'][i][0])[:4] + '±' + str(model['test'][i][1])[:4] if i in model['test'] else '-' for i in name2short_name})
67
 
68
+ columns_to_show = ['model', 'author', 'email', 'paper_url', 'github_url', 'submitted_time'] + list(name2short_name.values())
69
 
70
  # Check if model_res is empty
71
  if len(model_res) > 0:
 
77
  #df_res = pd.DataFrame([{col: model[col] for col in columns_to_show} for model in model_res])
78
  print(df_res)
79
  ranks = df_res[list(name2short_name.values())].rank(ascending = ascending)
80
+ df_res.rename(columns={'model': 'Model', 'author': 'Author', 'email': 'Email', 'paper_url': 'Paper URL', 'github_url': 'Github URL', 'submitted_time': 'Time'}, inplace=True)
81
  df_res['Average Rank⬆️'] = ranks.mean(axis=1)
82
  df_res.sort_values(by='Average Rank⬆️', ascending=True, inplace=True)
83
  return df_res