Spaces:
Runtime error
Runtime error
import subprocess | |
import gradio as gr | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
nc_tasks, | |
nr_tasks, | |
lp_tasks, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
COLS_NC, | |
COLS_NR, | |
COLS_LP, | |
EVAL_COLS, | |
EVAL_TYPES, | |
NUMERIC_INTERVALS, | |
TYPES, | |
AutoEvalColumn_NodeClassification, | |
AutoEvalColumn_NodeRegression, | |
AutoEvalColumn_LinkPrediction, | |
#AutoEvalColumn, | |
ModelType, | |
TASK_LIST, | |
OFFICIAL, | |
HONOR, | |
fields, | |
WeightType, | |
Precision | |
) | |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN | |
from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
from src.submission.submit import add_new_eval | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
try: | |
print(EVAL_REQUESTS_PATH) | |
snapshot_download( | |
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception: | |
restart_space() | |
try: | |
print(EVAL_RESULTS_PATH) | |
snapshot_download( | |
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception: | |
restart_space() | |
# Searching and filtering | |
def update_table( | |
hidden_df: pd.DataFrame, | |
columns: list, | |
query: str, | |
): | |
#filtered_df = filter_models(hidden_df, size_query, show_deleted) | |
filtered_df = filter_queries(query, hidden_df) | |
df = select_columns(filtered_df, columns) | |
return df | |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))] | |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
always_here_cols = [ | |
"Model" | |
] | |
# We use COLS to maintain sorting | |
filtered_df = df[ | |
always_here_cols + [c for c in COLS if c in df.columns and c in columns] | |
] | |
return filtered_df | |
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: | |
final_df = [] | |
if query != "": | |
queries = [q.strip() for q in query.split(";")] | |
for _q in queries: | |
_q = _q.strip() | |
if _q != "": | |
temp_filtered_df = search_table(filtered_df, _q) | |
if len(temp_filtered_df) > 0: | |
final_df.append(temp_filtered_df) | |
if len(final_df) > 0: | |
filtered_df = pd.concat(final_df) | |
filtered_df = filtered_df.drop_duplicates( | |
subset=[AutoEvalColumn.model.name] | |
) | |
return filtered_df | |
def filter_models( | |
df: pd.DataFrame, size_query: list, show_deleted: bool | |
) -> pd.DataFrame: | |
# Show all models | |
if show_deleted: | |
filtered_df = df | |
else: # Show only still on the hub models | |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True] | |
#type_emoji = [t[0] for t in type_query] | |
#filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] | |
#filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])] | |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query])) | |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") | |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) | |
filtered_df = filtered_df.loc[mask] | |
return filtered_df | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π Entity Classification Leaderboard", elem_id="llm-benchmark-tab-table", id=0): | |
COLS = COLS_NC | |
AutoEvalColumn = AutoEvalColumn_NodeClassification | |
original_df = get_leaderboard_df(EVAL_REQUESTS_PATH, "Node Classification") | |
leaderboard_df = original_df.copy() | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
search_bar = gr.Textbox( | |
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...", | |
show_label=False, | |
elem_id="search-bar", | |
) | |
with gr.Row(): | |
shown_columns = gr.CheckboxGroup( | |
choices=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if not c.hidden and not c.never_hidden | |
], | |
value=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if c.displayed_by_default and not c.hidden and not c.never_hidden | |
], | |
label="Select columns to show", | |
elem_id="column-select", | |
interactive=True, | |
) | |
print(leaderboard_df) | |
print(fields(AutoEvalColumn)) | |
leaderboard_table = gr.components.Dataframe( | |
value=leaderboard_df[ | |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden] | |
+ shown_columns.value | |
], | |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, | |
datatype=TYPES, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=True, | |
) | |
# Dummy leaderboard for handling the case when the user uses backspace key | |
hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
value=original_df[COLS], | |
headers=COLS, | |
datatype=TYPES, | |
visible=False, | |
) | |
search_bar.submit( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
search_bar, | |
], | |
leaderboard_table, | |
) | |
for selector in [shown_columns]: | |
selector.change( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
search_bar, | |
], | |
leaderboard_table, | |
queue=True, | |
) | |
gr.Markdown("Evaluation metric: AUROC β¬οΈ") | |
with gr.TabItem("π Entity Regression Leaderboard", elem_id="llm-benchmark-tab-table", id=1): | |
COLS = COLS_NR | |
AutoEvalColumn = AutoEvalColumn_NodeRegression | |
original_df = get_leaderboard_df(EVAL_REQUESTS_PATH, "Node Regression") | |
leaderboard_df = original_df.copy() | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
search_bar = gr.Textbox( | |
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...", | |
show_label=False, | |
elem_id="search-bar", | |
) | |
with gr.Row(): | |
shown_columns = gr.CheckboxGroup( | |
choices=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if not c.hidden and not c.never_hidden | |
], | |
value=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if c.displayed_by_default and not c.hidden and not c.never_hidden | |
], | |
label="Select columns to show", | |
elem_id="column-select", | |
interactive=True, | |
) | |
print(leaderboard_df) | |
print(fields(AutoEvalColumn)) | |
leaderboard_table = gr.components.Dataframe( | |
value=leaderboard_df[ | |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden] | |
+ shown_columns.value | |
], | |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, | |
datatype=TYPES, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=True, | |
) | |
# Dummy leaderboard for handling the case when the user uses backspace key | |
hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
value=original_df[COLS], | |
headers=COLS, | |
datatype=TYPES, | |
visible=False, | |
) | |
search_bar.submit( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
search_bar, | |
], | |
leaderboard_table, | |
) | |
for selector in [shown_columns]: | |
selector.change( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
search_bar, | |
], | |
leaderboard_table, | |
queue=True, | |
) | |
gr.Markdown("Evaluation metric: MAE β¬οΈ") | |
with gr.TabItem("π Recommendation Leaderboard", elem_id="llm-benchmark-tab-table", id=2): | |
COLS = COLS_LP | |
AutoEvalColumn = AutoEvalColumn_LinkPrediction | |
original_df = get_leaderboard_df(EVAL_REQUESTS_PATH, "Link Prediction") | |
leaderboard_df = original_df.copy() | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
search_bar = gr.Textbox( | |
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...", | |
show_label=False, | |
elem_id="search-bar", | |
) | |
with gr.Row(): | |
shown_columns = gr.CheckboxGroup( | |
choices=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if not c.hidden and not c.never_hidden | |
], | |
value=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if c.displayed_by_default and not c.hidden and not c.never_hidden | |
], | |
label="Select columns to show", | |
elem_id="column-select", | |
interactive=True, | |
) | |
print(leaderboard_df) | |
print(fields(AutoEvalColumn)) | |
leaderboard_table = gr.components.Dataframe( | |
value=leaderboard_df[ | |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden] | |
+ shown_columns.value | |
], | |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, | |
datatype=TYPES, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=True, | |
) | |
# Dummy leaderboard for handling the case when the user uses backspace key | |
hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
value=original_df[COLS], | |
headers=COLS, | |
datatype=TYPES, | |
visible=False, | |
) | |
search_bar.submit( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
search_bar, | |
], | |
leaderboard_table, | |
) | |
for selector in [shown_columns]: | |
selector.change( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
search_bar, | |
], | |
leaderboard_table, | |
queue=True, | |
) | |
gr.Markdown("Evaluation metric: MAP β¬οΈ") | |
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
with gr.Row(): | |
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Column(): | |
author_name_textbox = gr.Textbox(label="Your name") | |
email_textbox = gr.Textbox(label="Your email") | |
relbench_version_textbox = gr.Textbox(label="RelBench version") | |
model_name_textbox = gr.Textbox(label="Model name") | |
''' | |
dataset_name_textbox = gr.Dropdown( | |
choices=[t.value.name for t in TASK_LIST], | |
label="Task name (e.g. rel-amazon-user-churn)", | |
multiselect=False, | |
value=None, | |
interactive=True, | |
) | |
''' | |
official_or_not = gr.Dropdown( | |
choices=[i.value.name for i in OFFICIAL], | |
label="Is it an official submission?", | |
multiselect=False, | |
value=None, | |
interactive=True, | |
) | |
paper_url_textbox = gr.Textbox(label="Paper URL Link") | |
github_url_textbox = gr.Textbox(label="GitHub URL Link") | |
#parameters_textbox = gr.Textbox(label="Number of parameters") | |
task_track = gr.Dropdown( | |
choices=['Entity Classification', 'Entity Regression', 'Recommendation'], | |
label="Choose the task track", | |
multiselect=False, | |
value=None, | |
interactive=True, | |
) | |
honor_code = gr.Dropdown( | |
choices=[i.value.name for i in HONOR], | |
label="Do you agree to the honor code?", | |
multiselect=False, | |
value=None, | |
interactive=True, | |
) | |
with gr.Column(): | |
test_performance = gr.Textbox(lines = 16, label="Test set performance, use {task: [mean,std]} format e.g. {'rel-amazon/user-churn': [0.352,0.023], 'rel-amazon/user-ltv': [0.304,0.022], ...}") | |
valid_performance = gr.Textbox(lines = 16, label="Validation set performance, use {task: [mean,std]} format e.g. {'rel-amazon/user-churn': [0.352,0.023], 'rel-amazon/user-ltv': [0.304,0.022], ...}") | |
submit_button = gr.Button("Submit Eval") | |
submission_result = gr.Markdown() | |
submit_button.click( | |
add_new_eval, | |
[ | |
author_name_textbox, | |
email_textbox, | |
relbench_version_textbox, | |
model_name_textbox, | |
official_or_not, | |
test_performance, | |
valid_performance, | |
paper_url_textbox, | |
github_url_textbox, | |
#parameters_textbox, | |
honor_code, | |
task_track | |
], | |
submission_result, | |
) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch() |