Spaces:
Restarting
Restarting
import json | |
import os | |
from datetime import datetime, timezone | |
from ast import literal_eval | |
from src.display.formatting import styled_error, styled_message, styled_warning | |
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO | |
from src.submission.check_validity import ( | |
already_submitted_models, | |
check_model_card, | |
get_model_size, | |
is_model_on_hub, | |
) | |
REQUESTED_MODELS = None | |
USERS_TO_SUBMISSION_DATES = None | |
class CustomJSONEncoder(json.JSONEncoder): | |
def default(self, obj): | |
try: | |
return super().default(obj) | |
except TypeError: | |
return str(obj) # Convert non-serializable object to string | |
def add_new_eval_json(eval_entry, out_path): | |
with open(out_path, "w") as f: | |
f.write(json.dumps(eval_entry, cls=CustomJSONEncoder)) | |
def add_new_eval( | |
author, | |
email, | |
relbench_version, | |
model, | |
official_or_not, | |
test_performance, | |
valid_performance, | |
paper_url, | |
github_url, | |
#parameters, | |
honor_code, | |
task_track | |
): | |
global REQUESTED_MODELS | |
global USERS_TO_SUBMISSION_DATES | |
if not REQUESTED_MODELS: | |
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH) | |
if task_track in ['Node Classification', 'Entity Classification']: | |
task_type = 'nc' | |
elif task_track in ['Node Regression', 'Entity Regression']: | |
task_type = 'nr' | |
elif task_track in ['Link Prediction', 'Recommendation']: | |
task_type = 'lp' | |
model_path = model + '_' + task_type | |
#precision = precision.split(" ")[0] | |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") | |
#model_size = parameters | |
# Seems good, creating the eval | |
print("Adding new eval") | |
eval_entry = { | |
"model": model, | |
"author": author, | |
"email": email, | |
"relbench_version": relbench_version, | |
"official_or_not": official_or_not, | |
"test": test_performance, | |
"valid": valid_performance, | |
"paper_url": paper_url, | |
"github_url": github_url, | |
"honor_code": honor_code, | |
"status": "PENDING", | |
"submitted_time": current_time, | |
#"params": model_size, | |
"task": task_track, | |
"private": False, | |
} | |
## add a checking to verify if the submission has no bug | |
try: | |
xx = literal_eval(eval_entry["test"]) | |
xx = literal_eval(eval_entry["valid"]) | |
except: | |
return styled_error("The testing/validation performance submitted do not follow the correct format. Please check the format and resubmit.") | |
# TODO: Check for duplicate submission | |
#if f"{model}" in REQUESTED_MODELS: | |
# return styled_error("This model has been already submitted.") | |
print("Creating eval file") | |
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{model}" | |
os.makedirs(OUT_DIR, exist_ok=True) | |
out_path = f"{OUT_DIR}/{model_path}_eval_request_False.json" | |
print(eval_entry) | |
#with open(out_path, "w") as f: | |
# f.write(json.dumps(eval_entry)) | |
add_new_eval_json(eval_entry, out_path) | |
print("Uploading eval file") | |
print(out_path) | |
print(QUEUE_REPO) | |
print(TOKEN) | |
print(API) | |
API.upload_file( | |
path_or_fileobj=out_path, | |
path_in_repo=out_path.split("eval-queue/")[1], | |
repo_id=QUEUE_REPO, | |
repo_type="dataset", | |
commit_message=f"Add {model} to eval queue", | |
) | |
# Remove the local file | |
os.remove(out_path) | |
return styled_message( | |
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list." | |
) | |