Keshav-rejoice commited on
Commit
1f8d74f
·
verified ·
1 Parent(s): f9a88ee

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -6
app.py CHANGED
@@ -66,27 +66,55 @@ if uploaded_file is not None:
66
 
67
  # class_indices = np.where(preds[0] > threshold)[0]
68
  # class_probabilities = preds[0][class_indices]
69
- class_indices = np.argmax(preds[0])
70
  # st.write(class_indices)
71
 
72
  # The corresponding maximum probability
73
- class_probabilities = preds[0][class_indices]
74
 
75
  # print(f"Class Index: {class_index}, Max Probability: {max_probability}")
76
  # unprint below
77
  # results_text = ""
78
- predicted_defects = []
79
  # if len(class_indices) > 0:
80
  # for i, class_idx in enumerate(class_indices):
81
- class_name = class_labels[class_indices]
82
- results_text = f"{class_name} (Class {class_indices}): Probability {class_probabilities:.2f}\n"
83
- predicted_defects.append(class_name)
84
  # else:
85
  # results_text = "No classes detected with a probability greater than the threshold."
 
 
 
 
 
86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
  # Display classification results in a text box
88
  st.text_area("Classification Results:", value=results_text, height=200)
89
 
 
 
 
 
 
 
 
90
  # Encode the uploaded image as Base64
91
  base64_image = base64.b64encode(file_bytes).decode("utf-8")
92
  image_data = f"data:image/jpeg;base64,{base64_image}"
 
66
 
67
  # class_indices = np.where(preds[0] > threshold)[0]
68
  # class_probabilities = preds[0][class_indices]
69
+ # class_indices = np.argmax(preds[0])
70
  # st.write(class_indices)
71
 
72
  # The corresponding maximum probability
73
+ # class_probabilities = preds[0][class_indices]
74
 
75
  # print(f"Class Index: {class_index}, Max Probability: {max_probability}")
76
  # unprint below
77
  # results_text = ""
78
+ # predicted_defects = []
79
  # if len(class_indices) > 0:
80
  # for i, class_idx in enumerate(class_indices):
81
+ # class_name = class_labels[class_indices]
82
+ # results_text = f"{class_name} (Class {class_indices}): Probability {class_probabilities:.2f}\n"
83
+ # predicted_defects.append(class_name)
84
  # else:
85
  # results_text = "No classes detected with a probability greater than the threshold."
86
+
87
+ # Display classification results in a text box
88
+ # st.text_area("Classification Results:", value=results_text, height=200)
89
+
90
+
91
 
92
+
93
+ # Get the index of the class with the maximum probability
94
+ class_indices = np.argmax(preds[0])
95
+
96
+ # The corresponding maximum probability
97
+ class_probabilities = preds[0][class_indices]
98
+
99
+ # Get the class name for the predicted index
100
+ class_name = class_labels[class_indices]
101
+
102
+ # Prepare the results text
103
+ results_text = f"{class_name} (Class {class_indices}): Probability {class_probabilities:.2f}\n"
104
+
105
+ # Append the class name to the predicted defects list
106
+ predicted_defects = [class_name]
107
+
108
  # Display classification results in a text box
109
  st.text_area("Classification Results:", value=results_text, height=200)
110
 
111
+
112
+
113
+
114
+
115
+
116
+
117
+
118
  # Encode the uploaded image as Base64
119
  base64_image = base64.b64encode(file_bytes).decode("utf-8")
120
  image_data = f"data:image/jpeg;base64,{base64_image}"