reiflja1's picture
initial commit
925d33a verified
raw
history blame
844 Bytes
# Load the model
model = tf.keras.models.load_model('pokemon_classifier_model.keras')
def predict(image):
img = tf.keras.preprocessing.image.img_to_array(image)
img = tf.keras.preprocessing.image.smart_resize(img, (224, 224))
img = tf.expand_dims(img, 0) # Make batch of one
pred = model.predict(img)
pred_label = tf.argmax(pred, axis=1).numpy()[0] # get the index of the max logit
pred_class = class_names[pred_label] # use the index to get the corresponding class name
confidence = tf.nn.softmax(pred)[0][pred_label] # softmax to get the confidence
print(f"Predicted: {pred_class}, Confidence: {confidence:.4f}")
return pred_class
# Setup Gradio interface
iface = gr.Interface(fn=predict, inputs=gr.Image(), outputs="text", title="Pokémon Classifier")
# Run the interface
iface.launch()