Spaces:
Runtime error
Runtime error
reichenbach
commited on
Commit
•
7bff9b8
1
Parent(s):
5ee2d13
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import torch
|
3 |
+
import requests
|
4 |
+
import gradio as gr
|
5 |
+
from transformers import pipeline
|
6 |
+
from usellm import Message, Options, UseLLM
|
7 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
8 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
9 |
+
|
10 |
+
|
11 |
+
def text_to_speech(text_input):
|
12 |
+
CHUNK_SIZE = 1024
|
13 |
+
url = "https://api.elevenlabs.io/v1/text-to-speech/TxGEqnHWrfWFTfGW9XjX"
|
14 |
+
|
15 |
+
headers = {
|
16 |
+
"Accept": "audio/mpeg",
|
17 |
+
"Content-Type": "application/json",
|
18 |
+
"xi-api-key": "7f91dfdd5390bbfd9d44148c59644039"
|
19 |
+
}
|
20 |
+
|
21 |
+
data = {
|
22 |
+
"text": text_input,
|
23 |
+
"model_id": "eleven_monolingual_v1"
|
24 |
+
}
|
25 |
+
|
26 |
+
audio_write_path = f"""output_{int(time.time())}.mp3"""
|
27 |
+
|
28 |
+
response = requests.post(url, json=data, headers=headers)
|
29 |
+
with open(audio_write_path, 'wb') as f:
|
30 |
+
for chunk in response.iter_content(chunk_size=CHUNK_SIZE):
|
31 |
+
if chunk:
|
32 |
+
f.write(chunk)
|
33 |
+
|
34 |
+
return audio_write_path
|
35 |
+
|
36 |
+
|
37 |
+
def whisper_inference(input_audio):
|
38 |
+
|
39 |
+
processor1 = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
|
40 |
+
model1 = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2")
|
41 |
+
|
42 |
+
forced_decoder_ids = processor1.get_decoder_prompt_ids(task="translate")
|
43 |
+
|
44 |
+
input_features = processor1(input_audio, sampling_rate=16000, return_tensors="pt").input_features
|
45 |
+
predicted_ids = model1.generate(input_features, forced_decoder_ids=forced_decoder_ids)
|
46 |
+
transcription = processor1.batch_decode(predicted_ids, skip_special_tokens=True)
|
47 |
+
|
48 |
+
return transcription
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
def biogpt_large_infer(input_text):
|
53 |
+
|
54 |
+
tokenizer1 = AutoTokenizer.from_pretrained("microsoft/BioGPT-Large-PubMedQA", add_special_tokens=False)
|
55 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/BioGPT-Large-PubMedQA")#.to('cuda:0')
|
56 |
+
|
57 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer1)#, device="cuda:0")
|
58 |
+
output = generator(input_text, min_length=100,max_length=1024,num_beams=5,early_stopping=True,
|
59 |
+
num_return_sequences=1, do_sample=True)
|
60 |
+
output = output[0]['generated_text']
|
61 |
+
output = output.replace('▃','').replace('FREETEXT','').replace('TITLE','').replace('PARAGRAPH','').replace('ABSTRACT','').replace('<','').replace('>','').replace('/','').strip()
|
62 |
+
|
63 |
+
return output
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
def chatgpt_infer(input_text):
|
68 |
+
|
69 |
+
# Initialize the service
|
70 |
+
service = UseLLM(service_url="https://usellm.org/api/llm")
|
71 |
+
|
72 |
+
# Prepare the conversation
|
73 |
+
messages = [
|
74 |
+
Message(role="system", content="You are a medical assistant, which answers the query based on factual medical information only."),
|
75 |
+
Message(role="user", content=f"Give me few points on the disease {input_text} and its treatment."),
|
76 |
+
]
|
77 |
+
|
78 |
+
options = Options(messages=messages)
|
79 |
+
|
80 |
+
# Interact with the service
|
81 |
+
response = service.chat(options)
|
82 |
+
|
83 |
+
return response.content
|
84 |
+
|
85 |
+
|
86 |
+
def audio_interface_demo(input_audio):
|
87 |
+
|
88 |
+
en_prompt = whisper_inference(input_audio)
|
89 |
+
|
90 |
+
biogpt_output = biogpt_large_infer(en_prompt)
|
91 |
+
chatgpt_output = chatgpt_infer(en_prompt)
|
92 |
+
|
93 |
+
bio_audio_output = text_to_speech(biogpt_output)
|
94 |
+
chat_audio_output = text_to_speech(chatgpt_output)
|
95 |
+
|
96 |
+
return biogpt_output, chatgpt_output, bio_audio_output, chat_audio_output
|
97 |
+
|
98 |
+
|
99 |
+
def text_interface_demo(input_text):
|
100 |
+
|
101 |
+
#en_prompt = whisper_inference(input_audio)
|
102 |
+
|
103 |
+
biogpt_output = biogpt_large_infer(input_text)
|
104 |
+
chatgpt_output = chatgpt_infer(input_text)
|
105 |
+
|
106 |
+
return biogpt_output, chatgpt_output
|
107 |
+
|
108 |
+
|
109 |
+
examples = [
|
110 |
+
["Meningitis is"],
|
111 |
+
["Brain Tumour is"]
|
112 |
+
]
|
113 |
+
|
114 |
+
app = gr.Blocks()
|
115 |
+
with app:
|
116 |
+
gr.Markdown("# **<h4 align='center'>Voice based Medical Informational Bot<h4>**")
|
117 |
+
|
118 |
+
with gr.Row():
|
119 |
+
with gr.Column():
|
120 |
+
|
121 |
+
with gr.Tab("Text"):
|
122 |
+
input_text = gr.Textbox(lines=3, value="Brain Tumour is", label="Text")
|
123 |
+
text_button = gr.Button(value="Predict")
|
124 |
+
|
125 |
+
with gr.Tab("Audio"):
|
126 |
+
input_audio = gr.Audio(value="/home/ec2-user/SageMaker/text_vd_demo/artifacts/input.mp3", source="upload", type="filepath", label='Audio')
|
127 |
+
audio_button = gr.Button(value="Predict")
|
128 |
+
|
129 |
+
with gr.Row():
|
130 |
+
with gr.Column():
|
131 |
+
with gr.Tab("Output Text"):
|
132 |
+
|
133 |
+
biogpt_output = gr.Textbox(lines=3, label="BioGpt Output")
|
134 |
+
chatgpt_output = gr.Textbox(lines=3,label="ChatGPT Output")
|
135 |
+
|
136 |
+
with gr.Tab("Output Audio"):
|
137 |
+
|
138 |
+
biogpt_output = gr.Textbox(lines=3, label="BioGpt Output")
|
139 |
+
chatgpt_output = gr.Textbox(lines=3,label="ChatGPT Output")
|
140 |
+
|
141 |
+
audio_output1 = gr.Audio(value=None, label="ChatGPT Audio Output")
|
142 |
+
audio_output2 = gr.Audio(value=None, label="BioGpt Audio Output")
|
143 |
+
|
144 |
+
#gr.Examples(examples, inputs=[input_text], outputs=[prompt_text, output_text, translated_text], fn=biogpt_text, cache_examples=False)
|
145 |
+
text_button.click(text_interface_demo, inputs=[input_text], outputs=[biogpt_output, chatgpt_output])
|
146 |
+
audio_button.click(audio_interface_demo, inputs=[input_audio], outputs=[biogpt_output, chatgpt_output, audio_output2, audio_output1])
|
147 |
+
|
148 |
+
app.launch(share=True, debug=True)
|