Spaces:
Running
Running
import os | |
import argparse | |
import torch | |
import json | |
from glob import glob | |
from pyworld import pyworld | |
from tqdm import tqdm | |
from scipy.io import wavfile | |
import utils | |
from mel_processing import mel_spectrogram_torch | |
#import h5py | |
import logging | |
logging.getLogger('numba').setLevel(logging.WARNING) | |
import parselmouth | |
import librosa | |
import numpy as np | |
def get_f0(path,p_len=None, f0_up_key=0): | |
x, _ = librosa.load(path, 32000) | |
if p_len is None: | |
p_len = x.shape[0]//320 | |
else: | |
assert abs(p_len-x.shape[0]//320) < 3, (path, p_len, x.shape) | |
time_step = 320 / 32000 * 1000 | |
f0_min = 50 | |
f0_max = 1100 | |
f0_mel_min = 1127 * np.log(1 + f0_min / 700) | |
f0_mel_max = 1127 * np.log(1 + f0_max / 700) | |
f0 = parselmouth.Sound(x, 32000).to_pitch_ac( | |
time_step=time_step / 1000, voicing_threshold=0.6, | |
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency'] | |
pad_size=(p_len - len(f0) + 1) // 2 | |
if(pad_size>0 or p_len - len(f0) - pad_size>0): | |
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant') | |
f0bak = f0.copy() | |
f0 *= pow(2, f0_up_key / 12) | |
f0_mel = 1127 * np.log(1 + f0 / 700) | |
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1 | |
f0_mel[f0_mel <= 1] = 1 | |
f0_mel[f0_mel > 255] = 255 | |
f0_coarse = np.rint(f0_mel).astype(np.int) | |
return f0_coarse, f0bak | |
def resize2d(x, target_len): | |
source = np.array(x) | |
source[source<0.001] = np.nan | |
target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source) | |
res = np.nan_to_num(target) | |
return res | |
def compute_f0(path, c_len): | |
x, sr = librosa.load(path, sr=32000) | |
f0, t = pyworld.dio( | |
x.astype(np.double), | |
fs=sr, | |
f0_ceil=800, | |
frame_period=1000 * 320 / sr, | |
) | |
f0 = pyworld.stonemask(x.astype(np.double), f0, t, 32000) | |
for index, pitch in enumerate(f0): | |
f0[index] = round(pitch, 1) | |
assert abs(c_len - x.shape[0]//320) < 3, (c_len, f0.shape) | |
return None, resize2d(f0, c_len) | |
def process(filename): | |
print(filename) | |
save_name = filename+".soft.pt" | |
if not os.path.exists(save_name): | |
devive = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
wav, _ = librosa.load(filename, sr=16000) | |
wav = torch.from_numpy(wav).unsqueeze(0).to(devive) | |
c = utils.get_hubert_content(hmodel, wav) | |
torch.save(c.cpu(), save_name) | |
else: | |
c = torch.load(save_name) | |
f0path = filename+".f0.npy" | |
if not os.path.exists(f0path): | |
cf0, f0 = compute_f0(filename, c.shape[-1] * 2) | |
np.save(f0path, f0) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--in_dir", type=str, default="dataset/32k", help="path to input dir") | |
args = parser.parse_args() | |
print("Loading hubert for content...") | |
hmodel = utils.get_hubert_model(0 if torch.cuda.is_available() else None) | |
print("Loaded hubert.") | |
filenames = glob(f'{args.in_dir}/*/*.wav', recursive=True)#[:10] | |
for filename in tqdm(filenames): | |
process(filename) | |