Spaces:
Running
Running
import io | |
import logging | |
import soundfile | |
import torch | |
import torchaudio | |
from flask import Flask, request, send_file | |
from flask_cors import CORS | |
from inference.infer_tool import Svc, RealTimeVC | |
app = Flask(__name__) | |
CORS(app) | |
logging.getLogger('numba').setLevel(logging.WARNING) | |
def voice_change_model(): | |
request_form = request.form | |
wave_file = request.files.get("sample", None) | |
# 变调信息 | |
f_pitch_change = float(request_form.get("fPitchChange", 0)) | |
# DAW所需的采样率 | |
daw_sample = int(float(request_form.get("sampleRate", 0))) | |
speaker_id = int(float(request_form.get("sSpeakId", 0))) | |
# http获得wav文件并转换 | |
input_wav_path = io.BytesIO(wave_file.read()) | |
# 模型推理 | |
if raw_infer: | |
out_audio, out_sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path) | |
tar_audio = torchaudio.functional.resample(out_audio, svc_model.target_sample, daw_sample) | |
else: | |
out_audio = svc.process(svc_model, speaker_id, f_pitch_change, input_wav_path) | |
tar_audio = torchaudio.functional.resample(torch.from_numpy(out_audio), svc_model.target_sample, daw_sample) | |
# 返回音频 | |
out_wav_path = io.BytesIO() | |
soundfile.write(out_wav_path, tar_audio.cpu().numpy(), daw_sample, format="wav") | |
out_wav_path.seek(0) | |
return send_file(out_wav_path, download_name="temp.wav", as_attachment=True) | |
if __name__ == '__main__': | |
# 启用则为直接切片合成,False为交叉淡化方式 | |
# vst插件调整0.3-0.5s切片时间可以降低延迟,直接切片方法会有连接处爆音、交叉淡化会有轻微重叠声音 | |
# 自行选择能接受的方法,或将vst最大切片时间调整为1s,此处设为Ture,延迟大音质稳定一些 | |
raw_infer = True | |
# 每个模型和config是唯一对应的 | |
model_name = "logs/32k/G_174000-Copy1.pth" | |
config_name = "configs/config.json" | |
svc_model = Svc(model_name, config_name) | |
svc = RealTimeVC() | |
# 此处与vst插件对应,不建议更改 | |
app.run(port=6842, host="0.0.0.0", debug=False, threaded=False) | |