|
import asyncio |
|
from datetime import datetime, date, time |
|
|
|
from faicons import icon_svg |
|
|
|
from modules.get_rules_in_window import ( |
|
DF, |
|
LAST_UPDATED, |
|
START_DATE, |
|
GET_SIGNIFICANT, |
|
METADATA, |
|
AGENCIES, |
|
groupby_agency, |
|
groupby_ym, |
|
plot_agency, |
|
plot_month, |
|
) |
|
|
|
from shiny import reactive |
|
from shiny.express import input, render, ui |
|
|
|
FOOTER = f""" |
|
----- |
|
|
|
Developed by the [GW Regulatory Studies Center](https://go.gwu.edu/regstudies). See our page on the [Congressional Review Act](https://regulatorystudies.columbian.gwu.edu/congressional-review-act) for more information. |
|
""" |
|
|
|
ui.page_opts( |
|
title="Rules in the Congressional Review Act (CRA) Window", |
|
) |
|
|
|
with ui.sidebar(title="Settings"): |
|
ui.input_date("start_date", "Start of window", value=START_DATE, min=START_DATE, max=date.today()) |
|
|
|
ui.input_switch("switch", "Show significant rules in plots", False) |
|
|
|
ui.input_select("menu_agency", "Select agencies", choices=["all"] + AGENCIES, selected="all") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with ui.layout_column_wrap(): |
|
with ui.value_box(showcase=icon_svg("book")): |
|
"All final rules" |
|
@render.text |
|
def count_rules(): |
|
return f"{filtered_df()['document_number'].count()}" |
|
ui.input_action_button("filter_all", "View", ) |
|
|
|
with ui.value_box(showcase=icon_svg("book")): |
|
"Section 3(f)(1) Significant rules" |
|
@render.text |
|
def count_3f1_significant(): |
|
output = "Not available" |
|
if GET_SIGNIFICANT: |
|
output = f"{filtered_df()['3f1_significant'].sum()}" |
|
return output |
|
ui.input_action_button("filter_3f1", "View", ) |
|
|
|
with ui.value_box(showcase=icon_svg("book")): |
|
"Other Significant rules" |
|
@render.text |
|
def count_other_significant(): |
|
output = "Not available" |
|
if GET_SIGNIFICANT: |
|
output = f"{filtered_df()['other_significant'].sum()}" |
|
return output |
|
ui.input_action_button("filter_other", "View", ) |
|
|
|
with ui.navset_card_underline(title=""): |
|
|
|
with ui.nav_panel("Rules in detail"): |
|
@render.data_frame |
|
def table_rule_detail(): |
|
df = filtered_sig() |
|
|
|
|
|
df.loc[:, "date"] = df.loc[:, "publication_date"].apply(lambda x: f"{x.date()}") |
|
char, limit = " ", 10 |
|
df.loc[:, "title"] = df["title"].apply(lambda x: x if len(x.split(char)) < (limit + 1) else f"{char.join(x.split(char)[:limit])}...") |
|
df.loc[:, "agencies"] = df["parent_slug"].apply(lambda x: "; ".join(x)) |
|
cols = [ |
|
"date", |
|
"title", |
|
"agencies", |
|
"3f1_significant", |
|
"other_significant", |
|
] |
|
return render.DataGrid(df.loc[:, [c for c in cols if c in df.columns]], width="100%") |
|
|
|
with ui.nav_panel("By month"): |
|
|
|
with ui.layout_columns(): |
|
|
|
@render.plot |
|
def plot_by_month(): |
|
grouped = grouped_df_month() |
|
return plot_month( |
|
grouped |
|
) |
|
|
|
@render.data_frame |
|
def table_by_month(): |
|
grouped = grouped_df_month() |
|
cols = [ |
|
"publication_year", |
|
"publication_month", |
|
"rules", |
|
"3f1_significant", |
|
"other_significant", |
|
] |
|
return render.DataTable(grouped.loc[:, [c for c in cols if c in grouped.columns]]) |
|
|
|
with ui.nav_panel("By agency"): |
|
|
|
with ui.layout_columns(): |
|
|
|
@render.plot |
|
def plot_by_agency(): |
|
grouped = grouped_df_agency() |
|
if input.switch(): |
|
pass |
|
|
|
else: |
|
plot = plot_agency( |
|
grouped.head(10), |
|
) |
|
return plot |
|
|
|
@render.data_frame |
|
def table_by_agency(): |
|
grouped = grouped_df_agency() |
|
cols = [ |
|
"agency", |
|
"acronym", |
|
"rules", |
|
"3f1_significant", |
|
"other_significant", |
|
] |
|
return render.DataTable(grouped.loc[:, [c for c in cols if c in grouped.columns]]) |
|
|
|
with ui.accordion(open=False): |
|
|
|
with ui.accordion_panel("Download Data"): |
|
|
|
@render.download( |
|
label="Download data as CSV", |
|
filename=f"rules_in_cra_window_accessed_{date.today()}.csv", |
|
) |
|
async def download(): |
|
await asyncio.sleep(0.25) |
|
yield filtered_df().to_csv(index=False) |
|
|
|
with ui.accordion(open=False): |
|
|
|
with ui.accordion_panel("Notes"): |
|
|
|
ui.markdown( |
|
f""" |
|
Rule data retrieved from the [Federal Register API](https://www.federalregister.gov/developers/documentation/api/v1). |
|
|
|
Executive Order 12866 significance data last updated **{LAST_UPDATED}**. |
|
""" |
|
) |
|
|
|
ui.markdown( |
|
FOOTER |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@reactive.calc |
|
def filtered_df(): |
|
filt_df = DF |
|
|
|
|
|
try: |
|
filt_df = filt_df.loc[filt_df["publication_date"] >= input.start_date()] |
|
except TypeError: |
|
filt_df = filt_df.loc[filt_df["publication_date"] >= datetime.combine(input.start_date(), time(0, 0))] |
|
|
|
|
|
if input.menu_agency() != "all": |
|
bool_agency = [True if input.menu_agency() in agency else False for agency in filt_df["parent_slug"]] |
|
filt_df = filt_df.loc[bool_agency] |
|
|
|
return filt_df |
|
|
|
@reactive.calc |
|
def filtered_sig(): |
|
filt_df = filtered_df() |
|
|
|
|
|
if filter_value.get() == "all": |
|
pass |
|
elif filter_value.get() == "3f1": |
|
filt_df = filt_df.loc[filt_df["3f1_significant"] == 1] |
|
elif filter_value.get() == "other": |
|
filt_df = filt_df.loc[filt_df["other_significant"] == 1] |
|
|
|
return filt_df |
|
|
|
@reactive.calc |
|
def grouped_df_month(): |
|
filt_df = filtered_sig() |
|
grouped = groupby_ym(filt_df, significant=GET_SIGNIFICANT) |
|
return grouped |
|
|
|
|
|
@reactive.calc |
|
def grouped_df_agency(): |
|
filt_df = filtered_sig() |
|
grouped = groupby_agency(filt_df, metadata=METADATA, significant=GET_SIGNIFICANT) |
|
return grouped |
|
|
|
|
|
|
|
|
|
|
|
filter_value = reactive.value("all") |
|
|
|
@reactive.effect |
|
@reactive.event(input.filter_all) |
|
def _(): |
|
filter_value.set("all") |
|
filtered_df() |
|
|
|
@reactive.effect |
|
@reactive.event(input.filter_3f1) |
|
def _(): |
|
filter_value.set("3f1") |
|
filtered_df() |
|
|
|
@reactive.effect |
|
@reactive.event(input.filter_other) |
|
def _(): |
|
filter_value.set("other") |
|
filtered_df() |
|
|