Spaces:
Running
Running
regraded01
commited on
Commit
·
65db96a
1
Parent(s):
10c623f
build: create a new streamlit app file that will be built in Langchain. TO DO: build out Langchain and then remove - rename back to when migration is successful
Browse files- app_langchain.py +110 -0
app_langchain.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import yaml
|
3 |
+
import requests
|
4 |
+
import re
|
5 |
+
import os
|
6 |
+
from src.pdfParser import get_pdf_text
|
7 |
+
|
8 |
+
# Get HuggingFace API key
|
9 |
+
api_key_name = "HUGGINGFACE_HUB_TOKEN"
|
10 |
+
api_key = os.getenv(api_key_name)
|
11 |
+
if api_key is None:
|
12 |
+
st.error(f"Failed to read `{api_key_name}`. Ensure the token is correctly located")
|
13 |
+
|
14 |
+
|
15 |
+
with open("config/model_config.yml", "r") as file:
|
16 |
+
model_config = yaml.safe_load(file)
|
17 |
+
|
18 |
+
system_message = model_config["system_message"]
|
19 |
+
model_id = model_config["model_id"]
|
20 |
+
|
21 |
+
|
22 |
+
def query(payload, model_id):
|
23 |
+
headers = {"Authorization": f"Bearer {api_key}"}
|
24 |
+
API_URL = f"https://api-inference.huggingface.co/models/{model_id}"
|
25 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
26 |
+
return response.json()
|
27 |
+
|
28 |
+
|
29 |
+
def prompt_generator(system_message, user_message):
|
30 |
+
return f"""
|
31 |
+
<s>[INST] <<SYS>>
|
32 |
+
{system_message}
|
33 |
+
<</SYS>>
|
34 |
+
{user_message} [/INST]
|
35 |
+
"""
|
36 |
+
|
37 |
+
|
38 |
+
# Pattern to clean up text response from API
|
39 |
+
pattern = r".*\[/INST\]([\s\S]*)$"
|
40 |
+
|
41 |
+
# Initialize chat history
|
42 |
+
if "messages" not in st.session_state:
|
43 |
+
st.session_state.messages = []
|
44 |
+
|
45 |
+
# Include PDF upload ability
|
46 |
+
pdf_upload = st.file_uploader(
|
47 |
+
"Upload a .PDF here",
|
48 |
+
type=".pdf",
|
49 |
+
)
|
50 |
+
|
51 |
+
if pdf_upload is not None:
|
52 |
+
pdf_text = get_pdf_text(pdf_upload)
|
53 |
+
|
54 |
+
|
55 |
+
if "key_inputs" not in st.session_state:
|
56 |
+
st.session_state.key_inputs = {}
|
57 |
+
|
58 |
+
col1, col2, col3 = st.columns([3, 3, 2])
|
59 |
+
|
60 |
+
with col1:
|
61 |
+
key_name = st.text_input("Key/Column Name (e.g. patient_name)", key="key_name")
|
62 |
+
|
63 |
+
with col2:
|
64 |
+
key_description = st.text_area(
|
65 |
+
"*(Optional) Description of key/column", key="key_description"
|
66 |
+
)
|
67 |
+
|
68 |
+
with col3:
|
69 |
+
if st.button("Extract this column"):
|
70 |
+
if key_description:
|
71 |
+
st.session_state.key_inputs[key_name] = key_description
|
72 |
+
else:
|
73 |
+
st.session_state.key_inputs[key_name] = "No further description provided"
|
74 |
+
|
75 |
+
if st.session_state.key_inputs:
|
76 |
+
keys_title = st.write("\nKeys/Columns for extraction:")
|
77 |
+
keys_values = st.write(st.session_state.key_inputs)
|
78 |
+
|
79 |
+
with st.spinner("Extracting requested data"):
|
80 |
+
if st.button("Extract data!"):
|
81 |
+
user_message = f"""
|
82 |
+
Use the text provided and denoted by 3 backticks ```{pdf_text}```.
|
83 |
+
Extract the following columns and return a table that could be uploaded to an SQL database.
|
84 |
+
{'; '.join([key + ': ' + st.session_state.key_inputs[key] for key in st.session_state.key_inputs])}
|
85 |
+
"""
|
86 |
+
the_prompt = prompt_generator(
|
87 |
+
system_message=system_message, user_message=user_message
|
88 |
+
)
|
89 |
+
response = query(
|
90 |
+
{
|
91 |
+
"inputs": the_prompt,
|
92 |
+
"parameters": {"max_new_tokens": 500, "temperature": 0.1},
|
93 |
+
},
|
94 |
+
model_id,
|
95 |
+
)
|
96 |
+
try:
|
97 |
+
match = re.search(
|
98 |
+
pattern, response[0]["generated_text"], re.MULTILINE | re.DOTALL
|
99 |
+
)
|
100 |
+
if match:
|
101 |
+
response = match.group(1).strip()
|
102 |
+
|
103 |
+
response = eval(response)
|
104 |
+
|
105 |
+
st.success("Data Extracted Successfully!")
|
106 |
+
st.write(response)
|
107 |
+
except:
|
108 |
+
st.error("Unable to connect to model. Please try again later.")
|
109 |
+
|
110 |
+
# st.success(f"Data Extracted!")
|