MeloTTS-English-v3 / melo /preprocess_text.py
mrfakename's picture
Upload 72 files
7af4264 verified
import json
from collections import defaultdict
from random import shuffle
from typing import Optional
from tqdm import tqdm
import click
from text.cleaner import clean_text_bert
import os
import torch
from text.symbols import symbols, num_languages, num_tones
@click.command()
@click.option(
"--metadata",
default="data/example/metadata.list",
type=click.Path(exists=True, file_okay=True, dir_okay=False),
)
@click.option("--cleaned-path", default=None)
@click.option("--train-path", default=None)
@click.option("--val-path", default=None)
@click.option(
"--config_path",
default="configs/config.json",
type=click.Path(exists=True, file_okay=True, dir_okay=False),
)
@click.option("--val-per-spk", default=4)
@click.option("--max-val-total", default=8)
@click.option("--clean/--no-clean", default=True)
def main(
metadata: str,
cleaned_path: Optional[str],
train_path: str,
val_path: str,
config_path: str,
val_per_spk: int,
max_val_total: int,
clean: bool,
):
if train_path is None:
train_path = os.path.join(os.path.dirname(metadata), 'train.list')
if val_path is None:
val_path = os.path.join(os.path.dirname(metadata), 'val.list')
out_config_path = os.path.join(os.path.dirname(metadata), 'config.json')
if cleaned_path is None:
cleaned_path = metadata + ".cleaned"
if clean:
out_file = open(cleaned_path, "w", encoding="utf-8")
new_symbols = []
for line in tqdm(open(metadata, encoding="utf-8").readlines()):
try:
utt, spk, language, text = line.strip().split("|")
norm_text, phones, tones, word2ph, bert = clean_text_bert(text, language, device='cuda:0')
for ph in phones:
if ph not in symbols and ph not in new_symbols:
new_symbols.append(ph)
print('update!, now symbols:')
print(new_symbols)
with open(f'{language}_symbol.txt', 'w') as f:
f.write(f'{new_symbols}')
assert len(phones) == len(tones)
assert len(phones) == sum(word2ph)
out_file.write(
"{}|{}|{}|{}|{}|{}|{}\n".format(
utt,
spk,
language,
norm_text,
" ".join(phones),
" ".join([str(i) for i in tones]),
" ".join([str(i) for i in word2ph]),
)
)
bert_path = utt.replace(".wav", ".bert.pt")
os.makedirs(os.path.dirname(bert_path), exist_ok=True)
torch.save(bert.cpu(), bert_path)
except Exception as error:
print("err!", line, error)
out_file.close()
metadata = cleaned_path
spk_utt_map = defaultdict(list)
spk_id_map = {}
current_sid = 0
with open(metadata, encoding="utf-8") as f:
for line in f.readlines():
utt, spk, language, text, phones, tones, word2ph = line.strip().split("|")
spk_utt_map[spk].append(line)
if spk not in spk_id_map.keys():
spk_id_map[spk] = current_sid
current_sid += 1
train_list = []
val_list = []
for spk, utts in spk_utt_map.items():
shuffle(utts)
val_list += utts[:val_per_spk]
train_list += utts[val_per_spk:]
if len(val_list) > max_val_total:
train_list += val_list[max_val_total:]
val_list = val_list[:max_val_total]
with open(train_path, "w", encoding="utf-8") as f:
for line in train_list:
f.write(line)
with open(val_path, "w", encoding="utf-8") as f:
for line in val_list:
f.write(line)
config = json.load(open(config_path, encoding="utf-8"))
config["data"]["spk2id"] = spk_id_map
config["data"]["training_files"] = train_path
config["data"]["validation_files"] = val_path
config["data"]["n_speakers"] = len(spk_id_map)
config["num_languages"] = num_languages
config["num_tones"] = num_tones
config["symbols"] = symbols
with open(out_config_path, "w", encoding="utf-8") as f:
json.dump(config, f, indent=2, ensure_ascii=False)
if __name__ == "__main__":
main()