reedmayhew's picture
Update app.py
ce069dd verified
import torch
from PIL import Image
import numpy as np
from transformers import AutoImageProcessor, Swin2SRForImageSuperResolution
import gradio as gr
import spaces
import os
def resize_image(image, max_size=2048):
width, height = image.size
if width > max_size or height > max_size:
aspect_ratio = width / height
if width > height:
new_width = max_size
new_height = int(new_width / aspect_ratio)
else:
new_height = max_size
new_width = int(new_height * aspect_ratio)
image = image.resize((new_width, new_height), Image.LANCZOS)
return image
def split_image(image, chunk_size=512):
width, height = image.size
chunks = []
for y in range(0, height, chunk_size):
for x in range(0, width, chunk_size):
chunk = image.crop((x, y, min(x + chunk_size, width), min(y + chunk_size, height)))
chunks.append((chunk, x, y))
return chunks
def stitch_image(chunks, original_size):
result = Image.new('RGB', original_size)
for img, x, y in chunks:
result.paste(img, (x, y))
return result
def upscale_chunk(chunk, model, processor, device):
inputs = processor(chunk, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
output = outputs.reconstruction.data.squeeze().cpu().float().clamp_(0, 1).numpy()
output = np.moveaxis(output, source=0, destination=-1)
output_image = (output * 255.0).round().astype(np.uint8)
return Image.fromarray(output_image)
def remove_boundary(image, boundary=32):
return image.crop((0, 0, image.width - boundary, image.height - boundary))
@spaces.GPU
def main(image, original_filename, model_choice, save_as_jpg=True, use_tiling=True):
image = resize_image(image)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_paths = {
"Pixel Perfect": "caidas/swin2SR-classical-sr-x4-64",
"PSNR Match (Recommended)": "caidas/swin2SR-realworld-sr-x4-64-bsrgan-psnr"
}
processor = AutoImageProcessor.from_pretrained(model_paths[model_choice])
model = Swin2SRForImageSuperResolution.from_pretrained(model_paths[model_choice]).to(device)
if use_tiling:
chunks = split_image(image)
upscaled_chunks = []
for chunk, x, y in chunks:
upscaled_chunk = upscale_chunk(chunk, model, processor, device)
upscaled_chunk = remove_boundary(upscaled_chunk)
upscaled_chunks.append((upscaled_chunk, x * 4, y * 4))
upscaled_image = stitch_image(upscaled_chunks, (image.width * 4, image.height * 4))
else:
upscaled_image = upscale_chunk(image, model, processor, device)
upscaled_image = remove_boundary(upscaled_image)
original_basename = os.path.splitext(original_filename)[0] if original_filename else "image"
output_filename = f"{original_basename}_upscaled"
if save_as_jpg:
output_filename += ".jpg"
upscaled_image.save(output_filename, quality=95)
else:
output_filename += ".png"
upscaled_image.save(output_filename)
return output_filename
def gradio_interface(image, model_choice, save_as_jpg, use_tiling):
try:
original_filename = getattr(image, 'name', 'image')
result = main(image, original_filename, model_choice, save_as_jpg, use_tiling)
return result, None
except Exception as e:
return None, str(e)
interface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Dropdown(
choices=["PSNR Match (Recommended)", "Pixel Perfect"],
label="Select Model",
value="PSNR Match (Recommended)"
),
gr.Checkbox(value=True, label="Save as JPEG"),
gr.Checkbox(value=True, label="Use Tiling"),
],
outputs=[
gr.File(label="Download Upscaled Image"),
gr.Textbox(label="Error Message", visible=True)
],
title="Image Upscaler",
description="Upload an image, select a model, and upscale it. Images larger than 2048x2048 will be resized while maintaining aspect ratio. Use tiling for efficient processing of large images.",
)
interface.launch()