Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from PIL import Image | |
import numpy as np | |
from transformers import AutoImageProcessor, Swin2SRForImageSuperResolution | |
import gradio as gr | |
import spaces | |
import os | |
def resize_image(image, max_size=2048): | |
width, height = image.size | |
if width > max_size or height > max_size: | |
aspect_ratio = width / height | |
if width > height: | |
new_width = max_size | |
new_height = int(new_width / aspect_ratio) | |
else: | |
new_height = max_size | |
new_width = int(new_height * aspect_ratio) | |
image = image.resize((new_width, new_height), Image.LANCZOS) | |
return image | |
def split_image(image, chunk_size=512): | |
width, height = image.size | |
chunks = [] | |
for y in range(0, height, chunk_size): | |
for x in range(0, width, chunk_size): | |
chunk = image.crop((x, y, min(x + chunk_size, width), min(y + chunk_size, height))) | |
chunks.append((chunk, x, y)) | |
return chunks | |
def stitch_image(chunks, original_size): | |
result = Image.new('RGB', original_size) | |
for img, x, y in chunks: | |
result.paste(img, (x, y)) | |
return result | |
def upscale_chunk(chunk, model, processor, device): | |
inputs = processor(chunk, return_tensors="pt") | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
output = outputs.reconstruction.data.squeeze().cpu().float().clamp_(0, 1).numpy() | |
output = np.moveaxis(output, source=0, destination=-1) | |
output_image = (output * 255.0).round().astype(np.uint8) | |
return Image.fromarray(output_image) | |
def main(image, model_choice, save_as_jpg=True, use_tiling=True): | |
# Resize the input image | |
image = resize_image(image) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model_paths = { | |
"Pixel Perfect": "caidas/swin2SR-classical-sr-x4-64", | |
"PSNR Match (Recommended)": "caidas/swin2SR-realworld-sr-x4-64-bsrgan-psnr" | |
} | |
processor = AutoImageProcessor.from_pretrained(model_paths[model_choice]) | |
model = Swin2SRForImageSuperResolution.from_pretrained(model_paths[model_choice]).to(device) | |
if use_tiling: | |
# Split the image into chunks | |
chunks = split_image(image) | |
# Process each chunk | |
upscaled_chunks = [] | |
for chunk, x, y in chunks: | |
upscaled_chunk = upscale_chunk(chunk, model, processor, device) | |
# Remove 32 pixels from bottom and right edges | |
upscaled_chunk = upscaled_chunk.crop((0, 0, upscaled_chunk.width - 32, upscaled_chunk.height - 32)) | |
upscaled_chunks.append((upscaled_chunk, x * 4, y * 4)) # Multiply coordinates by 4 due to 4x upscaling | |
# Stitch the chunks back together | |
final_size = (image.width * 4 - 32, image.height * 4 - 32) # Adjust for removed pixels | |
upscaled_image = stitch_image(upscaled_chunks, final_size) | |
else: | |
# Process the entire image at once | |
upscaled_image = upscale_chunk(image, model, processor, device) | |
# Generate output filename | |
original_filename = os.path.splitext(image.filename)[0] if image.filename else "image" | |
output_filename = f"{original_filename}_upscaled" | |
if save_as_jpg: | |
output_filename += ".jpg" | |
upscaled_image.save(output_filename, quality=95) | |
else: | |
output_filename += ".png" | |
upscaled_image.save(output_filename) | |
return output_filename | |
def gradio_interface(image, model_choice, save_as_jpg, use_tiling): | |
try: | |
result = main(image, model_choice, save_as_jpg, use_tiling) | |
return result, None | |
except Exception as e: | |
return None, str(e) | |
interface = gr.Interface( | |
fn=gradio_interface, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Image"), | |
gr.Dropdown( | |
choices=["PSNR Match (Recommended)", "Pixel Perfect"], | |
label="Select Model", | |
value="PSNR Match (Recommended)" | |
), | |
gr.Checkbox(value=True, label="Save as JPEG"), | |
gr.Checkbox(value=True, label="Use Tiling"), | |
], | |
outputs=[ | |
gr.File(label="Download Upscaled Image"), | |
gr.Textbox(label="Error Message", visible=True) | |
], | |
title="Image Upscaler", | |
description="Upload an image, select a model, and upscale it. Images larger than 2048x2048 will be resized while maintaining aspect ratio. Use tiling for efficient processing of large images.", | |
) | |
interface.launch() |