|
import os |
|
import glob |
|
import re |
|
import sys |
|
import argparse |
|
import logging |
|
import json |
|
import subprocess |
|
|
|
import numpy as np |
|
from scipy.io.wavfile import read |
|
import torch |
|
|
|
MATPLOTLIB_FLAG = False |
|
|
|
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) |
|
logger = logging |
|
|
|
f0_bin = 256 |
|
f0_max = 1100.0 |
|
f0_min = 50.0 |
|
f0_mel_min = 1127 * np.log(1 + f0_min / 700) |
|
f0_mel_max = 1127 * np.log(1 + f0_max / 700) |
|
|
|
|
|
def normalize_f0(f0, x_mask, uv, random_scale=True): |
|
|
|
uv_sum = torch.sum(uv, dim=1, keepdim=True) |
|
uv_sum[uv_sum == 0] = 9999 |
|
means = torch.sum(f0[:, 0, :] * uv, dim=1, keepdim=True) / uv_sum |
|
|
|
if random_scale: |
|
factor = torch.Tensor(f0.shape[0], 1).uniform_(0.8, 1.2).to(f0.device) |
|
else: |
|
factor = torch.ones(f0.shape[0], 1).to(f0.device) |
|
|
|
f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1) |
|
if torch.isnan(f0_norm).any(): |
|
exit(0) |
|
return f0_norm * x_mask |
|
|
|
|
|
def plot_data_to_numpy(x, y): |
|
global MATPLOTLIB_FLAG |
|
if not MATPLOTLIB_FLAG: |
|
import matplotlib |
|
matplotlib.use("Agg") |
|
MATPLOTLIB_FLAG = True |
|
mpl_logger = logging.getLogger('matplotlib') |
|
mpl_logger.setLevel(logging.WARNING) |
|
import matplotlib.pylab as plt |
|
import numpy as np |
|
|
|
fig, ax = plt.subplots(figsize=(10, 2)) |
|
plt.plot(x) |
|
plt.plot(y) |
|
plt.tight_layout() |
|
|
|
fig.canvas.draw() |
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') |
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) |
|
plt.close() |
|
return data |
|
|
|
|
|
def interpolate_f0(f0): |
|
""" |
|
对F0进行插值处理 |
|
""" |
|
|
|
data = np.reshape(f0, (f0.size, 1)) |
|
|
|
vuv_vector = np.zeros((data.size, 1), dtype=np.float32) |
|
vuv_vector[data > 0.0] = 1.0 |
|
vuv_vector[data <= 0.0] = 0.0 |
|
|
|
ip_data = data |
|
|
|
frame_number = data.size |
|
last_value = 0.0 |
|
for i in range(frame_number): |
|
if data[i] <= 0.0: |
|
j = i + 1 |
|
for j in range(i + 1, frame_number): |
|
if data[j] > 0.0: |
|
break |
|
if j < frame_number - 1: |
|
if last_value > 0.0: |
|
step = (data[j] - data[i - 1]) / float(j - i) |
|
for k in range(i, j): |
|
ip_data[k] = data[i - 1] + step * (k - i + 1) |
|
else: |
|
for k in range(i, j): |
|
ip_data[k] = data[j] |
|
else: |
|
for k in range(i, frame_number): |
|
ip_data[k] = last_value |
|
else: |
|
ip_data[i] = data[i] |
|
last_value = data[i] |
|
|
|
return ip_data[:, 0], vuv_vector[:, 0] |
|
|
|
|
|
def compute_f0_parselmouth(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512): |
|
import parselmouth |
|
x = wav_numpy |
|
if p_len is None: |
|
p_len = x.shape[0] // hop_length |
|
else: |
|
assert abs(p_len - x.shape[0] // hop_length) < 4, "pad length error" |
|
time_step = hop_length / sampling_rate * 1000 |
|
f0_min = 50 |
|
f0_max = 1100 |
|
f0 = parselmouth.Sound(x, sampling_rate).to_pitch_ac( |
|
time_step=time_step / 1000, voicing_threshold=0.6, |
|
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency'] |
|
|
|
pad_size = (p_len - len(f0) + 1) // 2 |
|
if (pad_size > 0 or p_len - len(f0) - pad_size > 0): |
|
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode='constant') |
|
return f0 |
|
|
|
|
|
def resize_f0(x, target_len): |
|
source = np.array(x) |
|
source[source < 0.001] = np.nan |
|
target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)), |
|
source) |
|
res = np.nan_to_num(target) |
|
return res |
|
|
|
|
|
def compute_f0_dio(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512): |
|
import pyworld |
|
if p_len is None: |
|
p_len = wav_numpy.shape[0] // hop_length |
|
f0, t = pyworld.dio( |
|
wav_numpy.astype(np.double), |
|
fs=sampling_rate, |
|
f0_ceil=800, |
|
frame_period=1000 * hop_length / sampling_rate, |
|
) |
|
f0 = pyworld.stonemask(wav_numpy.astype(np.double), f0, t, sampling_rate) |
|
for index, pitch in enumerate(f0): |
|
f0[index] = round(pitch, 1) |
|
return resize_f0(f0, p_len) |
|
|
|
|
|
def f0_to_coarse(f0): |
|
is_torch = isinstance(f0, torch.Tensor) |
|
f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700) |
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1 |
|
|
|
f0_mel[f0_mel <= 1] = 1 |
|
f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1 |
|
f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int) |
|
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min()) |
|
return f0_coarse |
|
|
|
|
|
def get_hubert_model(): |
|
vec_path = "hubert/checkpoint_best_legacy_500.pt" |
|
print("load model(s) from {}".format(vec_path)) |
|
from fairseq import checkpoint_utils |
|
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( |
|
[vec_path], |
|
suffix="", |
|
) |
|
model = models[0] |
|
model.eval() |
|
return model |
|
|
|
|
|
def get_hubert_content(hmodel, wav_16k_tensor): |
|
feats = wav_16k_tensor |
|
if feats.dim() == 2: |
|
feats = feats.mean(-1) |
|
assert feats.dim() == 1, feats.dim() |
|
feats = feats.view(1, -1) |
|
padding_mask = torch.BoolTensor(feats.shape).fill_(False) |
|
inputs = { |
|
"source": feats.to(wav_16k_tensor.device), |
|
"padding_mask": padding_mask.to(wav_16k_tensor.device), |
|
"output_layer": 9, |
|
} |
|
with torch.no_grad(): |
|
logits = hmodel.extract_features(**inputs) |
|
feats = hmodel.final_proj(logits[0]) |
|
return feats.transpose(1, 2) |
|
|
|
|
|
def get_content(cmodel, y): |
|
with torch.no_grad(): |
|
c = cmodel.extract_features(y.squeeze(1))[0] |
|
c = c.transpose(1, 2) |
|
return c |
|
|
|
|
|
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False): |
|
assert os.path.isfile(checkpoint_path) |
|
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') |
|
iteration = checkpoint_dict['iteration'] |
|
learning_rate = checkpoint_dict['learning_rate'] |
|
if optimizer is not None and not skip_optimizer and checkpoint_dict['optimizer'] is not None: |
|
optimizer.load_state_dict(checkpoint_dict['optimizer']) |
|
saved_state_dict = checkpoint_dict['model'] |
|
if hasattr(model, 'module'): |
|
state_dict = model.module.state_dict() |
|
else: |
|
state_dict = model.state_dict() |
|
new_state_dict = {} |
|
for k, v in state_dict.items(): |
|
try: |
|
|
|
|
|
new_state_dict[k] = saved_state_dict[k] |
|
assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape) |
|
except: |
|
print("error, %s is not in the checkpoint" % k) |
|
logger.info("%s is not in the checkpoint" % k) |
|
new_state_dict[k] = v |
|
if hasattr(model, 'module'): |
|
model.module.load_state_dict(new_state_dict) |
|
else: |
|
model.load_state_dict(new_state_dict) |
|
print("load ") |
|
logger.info("Loaded checkpoint '{}' (iteration {})".format( |
|
checkpoint_path, iteration)) |
|
return model, optimizer, learning_rate, iteration |
|
|
|
|
|
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path, val_steps, current_step): |
|
logger.info("Saving model and optimizer state at iteration {} to {}".format( |
|
iteration, checkpoint_path)) |
|
if hasattr(model, 'module'): |
|
state_dict = model.module.state_dict() |
|
else: |
|
state_dict = model.state_dict() |
|
torch.save({'model': state_dict, |
|
'iteration': iteration, |
|
'optimizer': optimizer.state_dict(), |
|
'learning_rate': learning_rate}, checkpoint_path) |
|
if current_step >= val_steps * 3: |
|
to_del_ckptname = checkpoint_path.replace(str(current_step), str(current_step - val_steps * 3)) |
|
if os.path.exists(to_del_ckptname): |
|
os.remove(to_del_ckptname) |
|
print("Removing ", to_del_ckptname) |
|
|
|
|
|
def clean_checkpoints(path_to_models='logs/48k/', n_ckpts_to_keep=2, sort_by_time=True): |
|
"""Freeing up space by deleting saved ckpts |
|
|
|
Arguments: |
|
path_to_models -- Path to the model directory |
|
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth |
|
sort_by_time -- True -> chronologically delete ckpts |
|
False -> lexicographically delete ckpts |
|
""" |
|
ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))] |
|
name_key = (lambda _f: int(re.compile('._(\d+)\.pth').match(_f).group(1))) |
|
time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f))) |
|
sort_key = time_key if sort_by_time else name_key |
|
x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith('_0.pth')], |
|
key=sort_key) |
|
to_del = [os.path.join(path_to_models, fn) for fn in |
|
(x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])] |
|
del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}") |
|
del_routine = lambda x: [os.remove(x), del_info(x)] |
|
rs = [del_routine(fn) for fn in to_del] |
|
|
|
|
|
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050): |
|
for k, v in scalars.items(): |
|
writer.add_scalar(k, v, global_step) |
|
for k, v in histograms.items(): |
|
writer.add_histogram(k, v, global_step) |
|
for k, v in images.items(): |
|
writer.add_image(k, v, global_step, dataformats='HWC') |
|
for k, v in audios.items(): |
|
writer.add_audio(k, v, global_step, audio_sampling_rate) |
|
|
|
|
|
def latest_checkpoint_path(dir_path, regex="G_*.pth"): |
|
f_list = glob.glob(os.path.join(dir_path, regex)) |
|
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f)))) |
|
x = f_list[-1] |
|
print(x) |
|
return x |
|
|
|
|
|
def plot_spectrogram_to_numpy(spectrogram): |
|
global MATPLOTLIB_FLAG |
|
if not MATPLOTLIB_FLAG: |
|
import matplotlib |
|
matplotlib.use("Agg") |
|
MATPLOTLIB_FLAG = True |
|
mpl_logger = logging.getLogger('matplotlib') |
|
mpl_logger.setLevel(logging.WARNING) |
|
import matplotlib.pylab as plt |
|
import numpy as np |
|
|
|
fig, ax = plt.subplots(figsize=(10, 2)) |
|
im = ax.imshow(spectrogram, aspect="auto", origin="lower", |
|
interpolation='none') |
|
plt.colorbar(im, ax=ax) |
|
plt.xlabel("Frames") |
|
plt.ylabel("Channels") |
|
plt.tight_layout() |
|
|
|
fig.canvas.draw() |
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') |
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) |
|
plt.close() |
|
return data |
|
|
|
|
|
def plot_alignment_to_numpy(alignment, info=None): |
|
global MATPLOTLIB_FLAG |
|
if not MATPLOTLIB_FLAG: |
|
import matplotlib |
|
matplotlib.use("Agg") |
|
MATPLOTLIB_FLAG = True |
|
mpl_logger = logging.getLogger('matplotlib') |
|
mpl_logger.setLevel(logging.WARNING) |
|
import matplotlib.pylab as plt |
|
import numpy as np |
|
|
|
fig, ax = plt.subplots(figsize=(6, 4)) |
|
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower', |
|
interpolation='none') |
|
fig.colorbar(im, ax=ax) |
|
xlabel = 'Decoder timestep' |
|
if info is not None: |
|
xlabel += '\n\n' + info |
|
plt.xlabel(xlabel) |
|
plt.ylabel('Encoder timestep') |
|
plt.tight_layout() |
|
|
|
fig.canvas.draw() |
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') |
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) |
|
plt.close() |
|
return data |
|
|
|
|
|
def load_wav_to_torch(full_path): |
|
sampling_rate, data = read(full_path) |
|
return torch.FloatTensor(data.astype(np.float32)), sampling_rate |
|
|
|
|
|
def load_filepaths_and_text(filename, split="|"): |
|
with open(filename, encoding='utf-8') as f: |
|
filepaths_and_text = [line.strip().split(split) for line in f] |
|
return filepaths_and_text |
|
|
|
|
|
def get_hparams(init=True): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('-c', '--config', type=str, default="./configs/base.json", |
|
help='JSON file for configuration') |
|
parser.add_argument('-m', '--model', type=str, required=True, |
|
help='Model name') |
|
|
|
args = parser.parse_args() |
|
model_dir = os.path.join("./logs", args.model) |
|
|
|
if not os.path.exists(model_dir): |
|
os.makedirs(model_dir) |
|
|
|
config_path = args.config |
|
config_save_path = os.path.join(model_dir, "config.json") |
|
if init: |
|
with open(config_path, "r") as f: |
|
data = f.read() |
|
with open(config_save_path, "w") as f: |
|
f.write(data) |
|
else: |
|
with open(config_save_path, "r") as f: |
|
data = f.read() |
|
config = json.loads(data) |
|
|
|
hparams = HParams(**config) |
|
hparams.model_dir = model_dir |
|
return hparams |
|
|
|
|
|
def get_hparams_from_dir(model_dir): |
|
config_save_path = os.path.join(model_dir, "config.json") |
|
with open(config_save_path, "r") as f: |
|
data = f.read() |
|
config = json.loads(data) |
|
|
|
hparams = HParams(**config) |
|
hparams.model_dir = model_dir |
|
return hparams |
|
|
|
|
|
def get_hparams_from_file(config_path): |
|
with open(config_path, "r") as f: |
|
data = f.read() |
|
config = json.loads(data) |
|
|
|
hparams = HParams(**config) |
|
|
|
logger.info("Loaded config '{}' (config: {})".format( |
|
config_path, hparams)) |
|
return hparams |
|
|
|
|
|
def check_git_hash(model_dir): |
|
source_dir = os.path.dirname(os.path.realpath(__file__)) |
|
if not os.path.exists(os.path.join(source_dir, ".git")): |
|
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format( |
|
source_dir |
|
)) |
|
return |
|
|
|
cur_hash = subprocess.getoutput("git rev-parse HEAD") |
|
|
|
path = os.path.join(model_dir, "githash") |
|
if os.path.exists(path): |
|
saved_hash = open(path).read() |
|
if saved_hash != cur_hash: |
|
logger.warn("git hash values are different. {}(saved) != {}(current)".format( |
|
saved_hash[:8], cur_hash[:8])) |
|
else: |
|
open(path, "w").write(cur_hash) |
|
|
|
|
|
def get_logger(model_dir, filename="train.log"): |
|
global logger |
|
logger = logging.getLogger(os.path.basename(model_dir)) |
|
logger.setLevel(logging.DEBUG) |
|
|
|
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s") |
|
if not os.path.exists(model_dir): |
|
os.makedirs(model_dir) |
|
h = logging.FileHandler(os.path.join(model_dir, filename)) |
|
h.setLevel(logging.DEBUG) |
|
h.setFormatter(formatter) |
|
logger.addHandler(h) |
|
return logger |
|
|
|
|
|
def repeat_expand_2d(content, target_len): |
|
|
|
|
|
src_len = content.shape[-1] |
|
target = torch.zeros([content.shape[0], target_len], dtype=torch.float).to(content.device) |
|
temp = torch.arange(src_len + 1) * target_len / src_len |
|
current_pos = 0 |
|
for i in range(target_len): |
|
if i < temp[current_pos + 1]: |
|
target[:, i] = content[:, current_pos] |
|
else: |
|
current_pos += 1 |
|
target[:, i] = content[:, current_pos] |
|
|
|
return target |
|
|
|
|
|
class HParams(): |
|
def __init__(self, **kwargs): |
|
for k, v in kwargs.items(): |
|
if type(v) == dict: |
|
v = HParams(**v) |
|
self[k] = v |
|
|
|
def keys(self): |
|
return self.__dict__.keys() |
|
|
|
def items(self): |
|
return self.__dict__.items() |
|
|
|
def values(self): |
|
return self.__dict__.values() |
|
|
|
def __len__(self): |
|
return len(self.__dict__) |
|
|
|
def __getitem__(self, key): |
|
return getattr(self, key) |
|
|
|
def __setitem__(self, key, value): |
|
return setattr(self, key, value) |
|
|
|
def __contains__(self, key): |
|
return key in self.__dict__ |
|
|
|
def __repr__(self): |
|
return self.__dict__.__repr__() |
|
|