VIST-UI / utils.py
Blane187's picture
Upload folder using huggingface_hub
2b7fd6e verified
import os
import glob
import re
import sys
import argparse
import logging
import json
import subprocess
import numpy as np
from scipy.io.wavfile import read
import torch
MATPLOTLIB_FLAG = False
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
logger = logging
f0_bin = 256
f0_max = 1100.0
f0_min = 50.0
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
def normalize_f0(f0, x_mask, uv, random_scale=True):
# calculate means based on x_mask
uv_sum = torch.sum(uv, dim=1, keepdim=True)
uv_sum[uv_sum == 0] = 9999
means = torch.sum(f0[:, 0, :] * uv, dim=1, keepdim=True) / uv_sum
if random_scale:
factor = torch.Tensor(f0.shape[0], 1).uniform_(0.8, 1.2).to(f0.device)
else:
factor = torch.ones(f0.shape[0], 1).to(f0.device)
# normalize f0 based on means and factor
f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
if torch.isnan(f0_norm).any():
exit(0)
return f0_norm * x_mask
def plot_data_to_numpy(x, y):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
mpl_logger = logging.getLogger('matplotlib')
mpl_logger.setLevel(logging.WARNING)
import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots(figsize=(10, 2))
plt.plot(x)
plt.plot(y)
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def interpolate_f0(f0):
"""
对F0进行插值处理
"""
data = np.reshape(f0, (f0.size, 1))
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
vuv_vector[data > 0.0] = 1.0
vuv_vector[data <= 0.0] = 0.0
ip_data = data
frame_number = data.size
last_value = 0.0
for i in range(frame_number):
if data[i] <= 0.0:
j = i + 1
for j in range(i + 1, frame_number):
if data[j] > 0.0:
break
if j < frame_number - 1:
if last_value > 0.0:
step = (data[j] - data[i - 1]) / float(j - i)
for k in range(i, j):
ip_data[k] = data[i - 1] + step * (k - i + 1)
else:
for k in range(i, j):
ip_data[k] = data[j]
else:
for k in range(i, frame_number):
ip_data[k] = last_value
else:
ip_data[i] = data[i]
last_value = data[i]
return ip_data[:, 0], vuv_vector[:, 0]
def compute_f0_parselmouth(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
import parselmouth
x = wav_numpy
if p_len is None:
p_len = x.shape[0] // hop_length
else:
assert abs(p_len - x.shape[0] // hop_length) < 4, "pad length error"
time_step = hop_length / sampling_rate * 1000
f0_min = 50
f0_max = 1100
f0 = parselmouth.Sound(x, sampling_rate).to_pitch_ac(
time_step=time_step / 1000, voicing_threshold=0.6,
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
pad_size = (p_len - len(f0) + 1) // 2
if (pad_size > 0 or p_len - len(f0) - pad_size > 0):
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode='constant')
return f0
def resize_f0(x, target_len):
source = np.array(x)
source[source < 0.001] = np.nan
target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)),
source)
res = np.nan_to_num(target)
return res
def compute_f0_dio(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
import pyworld
if p_len is None:
p_len = wav_numpy.shape[0] // hop_length
f0, t = pyworld.dio(
wav_numpy.astype(np.double),
fs=sampling_rate,
f0_ceil=800,
frame_period=1000 * hop_length / sampling_rate,
)
f0 = pyworld.stonemask(wav_numpy.astype(np.double), f0, t, sampling_rate)
for index, pitch in enumerate(f0):
f0[index] = round(pitch, 1)
return resize_f0(f0, p_len)
def f0_to_coarse(f0):
is_torch = isinstance(f0, torch.Tensor)
f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1
f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int)
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min())
return f0_coarse
def get_hubert_model():
vec_path = "hubert/checkpoint_best_legacy_500.pt"
print("load model(s) from {}".format(vec_path))
from fairseq import checkpoint_utils
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
[vec_path],
suffix="",
)
model = models[0]
model.eval()
return model
def get_hubert_content(hmodel, wav_16k_tensor):
feats = wav_16k_tensor
if feats.dim() == 2: # double channels
feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
inputs = {
"source": feats.to(wav_16k_tensor.device),
"padding_mask": padding_mask.to(wav_16k_tensor.device),
"output_layer": 9, # layer 9
}
with torch.no_grad():
logits = hmodel.extract_features(**inputs)
feats = hmodel.final_proj(logits[0])
return feats.transpose(1, 2)
def get_content(cmodel, y):
with torch.no_grad():
c = cmodel.extract_features(y.squeeze(1))[0]
c = c.transpose(1, 2)
return c
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
iteration = checkpoint_dict['iteration']
learning_rate = checkpoint_dict['learning_rate']
if optimizer is not None and not skip_optimizer and checkpoint_dict['optimizer'] is not None:
optimizer.load_state_dict(checkpoint_dict['optimizer'])
saved_state_dict = checkpoint_dict['model']
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
new_state_dict = {}
for k, v in state_dict.items():
try:
# assert "dec" in k or "disc" in k
# print("load", k)
new_state_dict[k] = saved_state_dict[k]
assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape)
except:
print("error, %s is not in the checkpoint" % k)
logger.info("%s is not in the checkpoint" % k)
new_state_dict[k] = v
if hasattr(model, 'module'):
model.module.load_state_dict(new_state_dict)
else:
model.load_state_dict(new_state_dict)
print("load ")
logger.info("Loaded checkpoint '{}' (iteration {})".format(
checkpoint_path, iteration))
return model, optimizer, learning_rate, iteration
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path, val_steps, current_step):
logger.info("Saving model and optimizer state at iteration {} to {}".format(
iteration, checkpoint_path))
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
torch.save({'model': state_dict,
'iteration': iteration,
'optimizer': optimizer.state_dict(),
'learning_rate': learning_rate}, checkpoint_path)
if current_step >= val_steps * 3:
to_del_ckptname = checkpoint_path.replace(str(current_step), str(current_step - val_steps * 3))
if os.path.exists(to_del_ckptname):
os.remove(to_del_ckptname)
print("Removing ", to_del_ckptname)
def clean_checkpoints(path_to_models='logs/48k/', n_ckpts_to_keep=2, sort_by_time=True):
"""Freeing up space by deleting saved ckpts
Arguments:
path_to_models -- Path to the model directory
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
sort_by_time -- True -> chronologically delete ckpts
False -> lexicographically delete ckpts
"""
ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
name_key = (lambda _f: int(re.compile('._(\d+)\.pth').match(_f).group(1)))
time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f)))
sort_key = time_key if sort_by_time else name_key
x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith('_0.pth')],
key=sort_key)
to_del = [os.path.join(path_to_models, fn) for fn in
(x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])]
del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}")
del_routine = lambda x: [os.remove(x), del_info(x)]
rs = [del_routine(fn) for fn in to_del]
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
for k, v in scalars.items():
writer.add_scalar(k, v, global_step)
for k, v in histograms.items():
writer.add_histogram(k, v, global_step)
for k, v in images.items():
writer.add_image(k, v, global_step, dataformats='HWC')
for k, v in audios.items():
writer.add_audio(k, v, global_step, audio_sampling_rate)
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
f_list = glob.glob(os.path.join(dir_path, regex))
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
x = f_list[-1]
print(x)
return x
def plot_spectrogram_to_numpy(spectrogram):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
mpl_logger = logging.getLogger('matplotlib')
mpl_logger.setLevel(logging.WARNING)
import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots(figsize=(10, 2))
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
interpolation='none')
plt.colorbar(im, ax=ax)
plt.xlabel("Frames")
plt.ylabel("Channels")
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def plot_alignment_to_numpy(alignment, info=None):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
mpl_logger = logging.getLogger('matplotlib')
mpl_logger.setLevel(logging.WARNING)
import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots(figsize=(6, 4))
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
interpolation='none')
fig.colorbar(im, ax=ax)
xlabel = 'Decoder timestep'
if info is not None:
xlabel += '\n\n' + info
plt.xlabel(xlabel)
plt.ylabel('Encoder timestep')
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def load_wav_to_torch(full_path):
sampling_rate, data = read(full_path)
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
def load_filepaths_and_text(filename, split="|"):
with open(filename, encoding='utf-8') as f:
filepaths_and_text = [line.strip().split(split) for line in f]
return filepaths_and_text
def get_hparams(init=True):
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
help='JSON file for configuration')
parser.add_argument('-m', '--model', type=str, required=True,
help='Model name')
args = parser.parse_args()
model_dir = os.path.join("./logs", args.model)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
config_path = args.config
config_save_path = os.path.join(model_dir, "config.json")
if init:
with open(config_path, "r") as f:
data = f.read()
with open(config_save_path, "w") as f:
f.write(data)
else:
with open(config_save_path, "r") as f:
data = f.read()
config = json.loads(data)
hparams = HParams(**config)
hparams.model_dir = model_dir
return hparams
def get_hparams_from_dir(model_dir):
config_save_path = os.path.join(model_dir, "config.json")
with open(config_save_path, "r") as f:
data = f.read()
config = json.loads(data)
hparams = HParams(**config)
hparams.model_dir = model_dir
return hparams
def get_hparams_from_file(config_path):
with open(config_path, "r") as f:
data = f.read()
config = json.loads(data)
hparams = HParams(**config)
logger.info("Loaded config '{}' (config: {})".format(
config_path, hparams))
return hparams
def check_git_hash(model_dir):
source_dir = os.path.dirname(os.path.realpath(__file__))
if not os.path.exists(os.path.join(source_dir, ".git")):
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
source_dir
))
return
cur_hash = subprocess.getoutput("git rev-parse HEAD")
path = os.path.join(model_dir, "githash")
if os.path.exists(path):
saved_hash = open(path).read()
if saved_hash != cur_hash:
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
saved_hash[:8], cur_hash[:8]))
else:
open(path, "w").write(cur_hash)
def get_logger(model_dir, filename="train.log"):
global logger
logger = logging.getLogger(os.path.basename(model_dir))
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
if not os.path.exists(model_dir):
os.makedirs(model_dir)
h = logging.FileHandler(os.path.join(model_dir, filename))
h.setLevel(logging.DEBUG)
h.setFormatter(formatter)
logger.addHandler(h)
return logger
def repeat_expand_2d(content, target_len):
# content : [h, t]
src_len = content.shape[-1]
target = torch.zeros([content.shape[0], target_len], dtype=torch.float).to(content.device)
temp = torch.arange(src_len + 1) * target_len / src_len
current_pos = 0
for i in range(target_len):
if i < temp[current_pos + 1]:
target[:, i] = content[:, current_pos]
else:
current_pos += 1
target[:, i] = content[:, current_pos]
return target
class HParams():
def __init__(self, **kwargs):
for k, v in kwargs.items():
if type(v) == dict:
v = HParams(**v)
self[k] = v
def keys(self):
return self.__dict__.keys()
def items(self):
return self.__dict__.items()
def values(self):
return self.__dict__.values()
def __len__(self):
return len(self.__dict__)
def __getitem__(self, key):
return getattr(self, key)
def __setitem__(self, key, value):
return setattr(self, key, value)
def __contains__(self, key):
return key in self.__dict__
def __repr__(self):
return self.__dict__.__repr__()