|
from inference.infer_tool import Svc |
|
from vextract.vocal_extract import VEX |
|
import gradio as gr |
|
import os |
|
|
|
|
|
|
|
|
|
|
|
class VitsGradio: |
|
def __init__(self): |
|
self.so = Svc() |
|
self.v = VEX() |
|
self.lspk = [] |
|
self.modelPaths = [] |
|
for root, dirs, files in os.walk("checkpoints"): |
|
for dir in dirs: |
|
self.modelPaths.append(dir) |
|
with gr.Blocks(title="Sovits歌声合成工具") as self.Vits: |
|
gr.Markdown( |
|
""" |
|
# 歌声合成工具 |
|
- 请依次选择语音模型、设备以及运行模式,然后点击"载入模型" |
|
- 输入音频需要是干净的人声 |
|
""" |
|
) |
|
with gr.Tab("人声提取"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
sample_audio = gr.Audio(label="输入音频") |
|
extractAudioBtn = gr.Button("提取人声") |
|
with gr.Row(): |
|
with gr.Column(): |
|
self.sample_vocal_output = gr.Audio(label="输出音频") |
|
self.sample_accompaniment_output = gr.Audio() |
|
extractAudioBtn.click(self.v.separate, inputs=[sample_audio], |
|
outputs=[self.sample_vocal_output, self.sample_accompaniment_output], |
|
show_progress=True, api_name="extract") |
|
with gr.Tab("歌声合成"): |
|
with gr.Row(visible=False) as self.VoiceConversion: |
|
with gr.Column(): |
|
with gr.Row(): |
|
with gr.Column(): |
|
self.srcaudio = gr.Audio(label="输入音频") |
|
self.btnVC = gr.Button("说话人转换") |
|
with gr.Column(): |
|
with gr.Row(): |
|
with gr.Column(): |
|
self.dsid0 = gr.Dropdown(label="目标角色", choices=self.lspk) |
|
self.tran = gr.Slider(label="升降调", maximum=60, minimum=-60, step=1, value=0) |
|
self.th = gr.Slider(label="切片阈值", maximum=32767, minimum=-32768, step=0.1, |
|
value=-40) |
|
self.ns = gr.Slider(label="噪音级别", maximum=1.0, minimum=0.0, step=0.1, |
|
value=0.4) |
|
with gr.Row(): |
|
self.VCOutputs = gr.Audio() |
|
self.btnVC.click(self.so.inference, inputs=[self.srcaudio, self.dsid0, self.tran, self.th, self.ns], |
|
outputs=[self.VCOutputs], show_progress=True, api_name="run") |
|
|
|
with gr.Row(visible=False) as self.VoiceBatchConversion: |
|
with gr.Column(): |
|
with gr.Row(): |
|
with gr.Column(): |
|
self.srcaudio = gr.Files(label="上传多个音频文件", file_types=['.wav'], |
|
interactive=True) |
|
self.btnVC = gr.Button("说话人转换") |
|
with gr.Column(): |
|
with gr.Row(): |
|
with gr.Column(): |
|
self.dsid1 = gr.Dropdown(label="目标角色", choices=self.lspk) |
|
self.tran = gr.Slider(label="升降调", maximum=60, minimum=-60, step=1, value=0) |
|
self.th = gr.Slider(label="切片阈值", maximum=32767, minimum=-32768, step=0.1, |
|
value=-40) |
|
self.ns = gr.Slider(label="噪音级别", maximum=1.0, minimum=0.0, step=0.1, |
|
value=0.4) |
|
with gr.Row(): |
|
self.VCOutputs = gr.File(label="Output Zip File", interactive=False) |
|
self.btnVC.click(self.batch_inference, inputs=[self.srcaudio, self.dsid1, self.tran, self.th, self.ns], |
|
outputs=[self.VCOutputs], show_progress=True, api_name="batch") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
modelstrs = gr.Dropdown(label="模型", choices=self.modelPaths, value=self.modelPaths[0], |
|
type="value") |
|
devicestrs = gr.Dropdown(label="设备", choices=["cpu", "cuda"], value="cuda", type="value") |
|
isbatchmod = gr.Radio(label="运行模式", choices=["single", "batch"], value="single", |
|
info="single: 单个文件处理. batch:批量处理支持上传多个文件") |
|
btnMod = gr.Button("载入模型") |
|
btnMod.click(self.loadModel, inputs=[modelstrs, devicestrs, isbatchmod], |
|
outputs=[self.dsid0, self.dsid1, self.VoiceConversion, self.VoiceBatchConversion], |
|
show_progress=True, api_name="switch") |
|
|
|
def batch_inference(self, files, chara, tran, slice_db, ns, progress=gr.Progress()): |
|
from zipfile import ZipFile |
|
from scipy.io import wavfile |
|
import uuid |
|
|
|
temp_directory = "temp" |
|
if not os.path.exists(temp_directory): |
|
os.mkdir(temp_directory) |
|
|
|
progress(0.00, desc="初始化文件夹") |
|
tmp_workdir_name = f"{temp_directory}/batch_{uuid.uuid4()}" |
|
if not os.path.exists(tmp_workdir_name): |
|
os.mkdir(tmp_workdir_name) |
|
|
|
progress(0.10, desc="初始化文件夹") |
|
|
|
output_files = [] |
|
|
|
for idx, file in enumerate(files): |
|
filename = os.path.basename(file.name) |
|
progress(0.10 + (0.70 / float(len(files))) * (idx + 1.00), desc=f"处理音频{(idx + 1)}/{len(files)}:{filename}") |
|
print(f"{idx}, {file}, {filename}") |
|
sampling_rate, audio = wavfile.read(file.name) |
|
output_sampling_rate, output_audio = self.so.inference((sampling_rate, audio), chara=chara, tran=tran, |
|
slice_db=slice_db, ns=ns) |
|
new_filepath = f"{tmp_workdir_name}/{filename}" |
|
wavfile.write(filename=new_filepath, rate=output_sampling_rate, data=output_audio) |
|
output_files.append(new_filepath) |
|
|
|
progress(0.70, desc="音频处理完毕") |
|
|
|
zipfilename = f"{tmp_workdir_name}/output.zip" |
|
with ZipFile(zipfilename, "w") as zip_obj: |
|
for idx, filepath in enumerate(output_files): |
|
zip_obj.write(filepath, os.path.basename(filepath)) |
|
progress(0.80, desc="压缩完毕") |
|
|
|
progress(1.00, desc="清理空间") |
|
return zipfilename |
|
|
|
def loadModel(self, path, device, process_mode): |
|
self.lspk = [] |
|
print(f"path: {path}, device: {device}") |
|
self.so.set_device(device) |
|
print(f"device set.") |
|
self.so.load_checkpoint(path) |
|
print(f"checkpoint loaded") |
|
for spk, sid in self.so.hps_ms.spk.items(): |
|
self.lspk.append(spk) |
|
print(f"LSPK: {self.lspk}") |
|
if process_mode == "single": |
|
VChange = gr.update(visible=True) |
|
VBChange = gr.update(visible=False) |
|
else: |
|
VChange = gr.update(visible=False) |
|
VBChange = gr.update(visible=True) |
|
SD0Change = gr.update(choices=self.lspk, value=self.lspk[0]) |
|
SD1Change = gr.update(choices=self.lspk, value=self.lspk[0]) |
|
print("allset update display") |
|
return [SD0Change, SD1Change, VChange, VBChange] |
|
|
|
|
|
if __name__ == "__main__": |
|
grVits = VitsGradio() |
|
grVits.Vits\ |
|
.queue(concurrency_count=20, status_update_rate=5.0)\ |
|
.launch(server_port=7870, share=True, show_api=True) |
|
|