Spaces:
Runtime error
Runtime error
from dotenv import load_dotenv | |
import gradio as gr | |
import os | |
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings | |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
from sentence_transformers import SentenceTransformer | |
# Load environment variables | |
load_dotenv() | |
# Configure the Llama index settings | |
Settings.llm = HuggingFaceInferenceAPI( | |
model_name="meta-llama/Meta-Llama-3-8B-Instruct", | |
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", | |
context_window=3000, | |
token=os.getenv("HF_TOKEN"), | |
max_new_tokens=512, | |
generate_kwargs={"temperature": 0.1}, | |
) | |
Settings.embed_model = HuggingFaceEmbedding( | |
model_name="BAAI/bge-small-en-v1.5" | |
) | |
# Define the directory for persistent storage and data | |
PERSIST_DIR = "db" | |
PDF_DIRECTORY = 'data' # Changed to the directory containing PDFs | |
# Ensure directories exist | |
os.makedirs(PDF_DIRECTORY, exist_ok=True) | |
os.makedirs(PERSIST_DIR, exist_ok=True) | |
# Variable to store current chat conversation | |
current_chat_history = [] | |
def data_ingestion_from_directory(): | |
# Use SimpleDirectoryReader on the directory containing the PDF files | |
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data() | |
storage_context = StorageContext.from_defaults() | |
index = VectorStoreIndex.from_documents(documents) | |
index.storage_context.persist(persist_dir=PERSIST_DIR) | |
def handle_query(query): | |
chat_text_qa_msgs = [ | |
( | |
"user", | |
""" | |
Your name is FernAI. Your aim is to provide the best service and information about RedFerns Tech company. You should provide answers based on the conversation flow and your final aim is attract the user to connect our company services. And summarize the answer try to give the answer with less words and effectively. | |
{context_str} | |
Question: | |
{query_str} | |
""" | |
) | |
] | |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) | |
# Load index from storage | |
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) | |
index = load_index_from_storage(storage_context) | |
# Use chat history to enhance response | |
context_str = "" | |
for past_query, response in reversed(current_chat_history): | |
if past_query.strip(): | |
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n" | |
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) | |
answer = query_engine.query(query) | |
if hasattr(answer, 'response'): | |
response = answer.response | |
elif isinstance(answer, dict) and 'response' in answer: | |
response = answer['response'] | |
else: | |
response = "Sorry, I couldn't find an answer." | |
# Update current chat history | |
current_chat_history.append((query, response)) | |
return response | |
# Example usage: Process PDF ingestion from directory | |
print("Processing PDF ingestion from directory:", PDF_DIRECTORY) | |
data_ingestion_from_directory() | |
# Define the function to handle predictions | |
def predict(message,history): | |
response = handle_query(message) | |
return response | |
# Create the chat interface with a custom layout function | |
css = ''' | |
/* Style the chat container */ | |
.gradio-container { | |
display: flex; | |
flex-direction: column; | |
width: 450px; | |
margin: 0 auto; | |
padding: 20px; | |
border: 1px solid #ddd; | |
border-radius: 10px; | |
background-color: #fff; | |
box-shadow: 0 4px 8px rgba(0,0,0,0.1); | |
position: relative; | |
height: 600px; /* Adjust the height of the container */ | |
} | |
/* Style the logo */ | |
.gradio-logo { | |
display: flex; | |
justify-content: center; | |
margin-bottom: 20px; | |
} | |
.gradio-logo img { | |
width: 100%; | |
max-width: 300px; | |
} | |
/* Style the title */ | |
.gradio-title { | |
text-align: center; | |
font-weight: bold; | |
font-size: 24px; | |
margin-bottom: 20px; | |
color: #4A90E2; | |
} | |
/* Style the chat history */ | |
.gradio-chat-history { | |
flex: 1; | |
overflow-y: auto; | |
padding: 15px; | |
border-bottom: 1px solid #ddd; | |
background-color: #f9f9f9; | |
border-radius: 5px; | |
margin-bottom: 10px; | |
max-height: 500px; /* Increase the height of the chat history */ | |
} | |
/* Style the chat messages */ | |
.gradio-message { | |
margin-bottom: 15px; | |
display: flex; | |
flex-direction: column; /* Stack messages vertically */ | |
} | |
.gradio-message.user .gradio-message-content { | |
background-color: #E1FFC7; | |
align-self: flex-end; | |
border: 1px solid #c3e6cb; | |
border-radius: 15px 15px 0 15px; | |
padding: 10px; | |
font-size: 16px; | |
margin-bottom: 5px; | |
max-width: 80%; | |
} | |
.gradio-message.bot .gradio-message-content { | |
background-color: #fff; | |
align-self: flex-start; | |
border: 1px solid #ced4da; | |
border-radius: 15px 15px 15px 0; | |
padding: 10px; | |
font-size: 16px; | |
margin-bottom: 5px; | |
max-width: 80%; | |
} | |
.gradio-message-content { | |
box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
} | |
/* Style the footer */ | |
.gradio-footer { | |
display: flex; | |
padding: 10px; | |
border-top: 1px solid #ddd; | |
background-color: #F8D7DA; /* Light red background color */ | |
position: absolute; | |
bottom: 0; | |
width: calc(100% - 40px); /* Adjust width to match container padding */ | |
} | |
/* Remove Gradio footer */ | |
footer { | |
display: none !important; | |
background-color: #F8D7DA; | |
} | |
''' | |
# Create a custom HTML block for the logo | |
logo_html = ''' | |
<div class="gradio-logo"> | |
<img src="https://redfernstech.com/wp-content/uploads/2024/05/RedfernsLogo_FinalV1.0-3-2048x575.png" alt="Company Logo"> | |
</div> | |
''' | |
# Create a Blocks layout with the custom HTML and ChatInterface | |
with gr.Blocks(theme=gr.themes.Monochrome(), fill_height=True,css=css) as demo: | |
gr.HTML(logo_html) | |
gr.ChatInterface(predict,clear_btn=None, | |
undo_btn=None, | |
retry_btn=None) | |
# Launch the interface | |
demo.launch() | |