SRUNU / app.py
srinuksv's picture
Update app.py
41f5af4 verified
raw
history blame
4.33 kB
from dotenv import load_dotenv
import gradio as gr
import os
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from sentence_transformers import SentenceTransformer
# Load environment variables
load_dotenv()
# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
model_name="mistralai/Mistral-7B-v0.3",
tokenizer_name="mistralai/Mistral-7B-v0.3",
context_window=3000,
token=os.getenv("HF_TOKEN"),
max_new_tokens=512,
generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5"
)
# Define the directory for persistent storage and data
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data' # Changed to the directory containing PDFs
# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
# Variable to store current chat conversation
current_chat_history = []
def data_ingestion_from_directory():
# Use SimpleDirectoryReader on the directory containing the PDF files
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
storage_context = StorageContext.from_defaults()
index = VectorStoreIndex.from_documents(documents)
index.storage_context.persist(persist_dir=PERSIST_DIR)
def handle_query(query):
chat_text_qa_msgs = [
(
"user",
"""
As FernAI, your goal is to offer top-tier service and information about RedFerns Tech company.
Provide answers naturally based on the conversation flow. Ultimately, aim to attract users to connect with our company services. .
Summarize answers effectively in fewer words without unnecessary repetition.
{context_str}
Question:
{query_str}
"""
)
]
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
# Load index from storage
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
# Use chat history to enhance response
context_str = ""
for past_query, response in reversed(current_chat_history):
if past_query.strip():
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
answer = query_engine.query(query)
if hasattr(answer, 'response'):
response = answer.response
elif isinstance(answer, dict) and 'response' in answer:
response = answer['response']
else:
response = "Sorry, I couldn't find an answer."
# Update current chat history
current_chat_history.append((query, response))
return response
# Example usage: Process PDF ingestion from directory
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
data_ingestion_from_directory()
# Define the function to handle predictions
"""def predict(message,history):
response = handle_query(message)
return response"""
def predict(message, history):
logo_html = '''
<div class="circle-logo">
<img src="https://rb.gy/8r06eg" alt="FernAi">
</div>
'''
response = handle_query(message)
response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>'
return response_with_logo
# Custom CSS for styling
css = '''
.circle-logo {
display: inline-block;
width: 40px;
height: 40px;
border-radius: 50%;
overflow: hidden;
margin-right: 10px;
vertical-align: middle;
}
.circle-logo img {
width: 100%;
height: 100%;
object-fit: cover;
}
.response-with-logo {
display: flex;
align-items: center;
margin-bottom: 10px;
}
footer {
display: none !important;
background-color: #F8D7DA;
}
'''
gr.ChatInterface(predict,
css=css,
description="FernAI",
clear_btn=None, undo_btn=None, retry_btn=None,
examples=['Tell me about Redfernstech?', 'Services in Redfernstech?']
).launch()