Upload app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,31 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy
|
3 |
+
import tensorflow as tf
|
4 |
|
|
|
|
|
5 |
|
6 |
+
|
7 |
+
interpreter = tf.lite.Interpreter(model_path=r"C:\Users\lenwe\converted_dog_model.tflite")
|
8 |
+
interpreter.allocate_tensors()
|
9 |
+
input_details = interpreter.get_input_details()
|
10 |
+
output_details = interpreter.get_output_details()
|
11 |
+
|
12 |
+
|
13 |
+
def predict(img):
|
14 |
+
|
15 |
+
img = img/255.
|
16 |
+
|
17 |
+
interpreter.set_tensor(input_details[0]['index'], np.expand_dims(img, axis = 0).astype(np.float32))
|
18 |
+
interpreter.invoke()
|
19 |
+
pred = interpreter.get_tensor(output_details[0]['index'])
|
20 |
+
|
21 |
+
if len(pred[0]) > 1:
|
22 |
+
pred_class = class_names[tf.argmax(pred[0])]
|
23 |
+
else:
|
24 |
+
pred_class = class_names[int(tf.round(pred[0]))]
|
25 |
+
|
26 |
+
return f"Your dog breed is {pred_class}."
|
27 |
+
|
28 |
+
|
29 |
+
demo = gr.Interface(fn=predict, inputs=gr.Image(shape=(224, 224)), outputs=gr.Label(num_top_classes=3))
|
30 |
+
|
31 |
+
demo.launch()
|