srishti048 commited on
Commit
0d80cde
1 Parent(s): d04c869

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -0
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import streamlit as st
2
  import joblib,torch
3
  import time
 
4
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
5
  loaded_tokenizer = joblib.load("finalized_tokenizer.sav")
6
  loaded_model = joblib.load("finalized_model.sav")
@@ -9,6 +10,16 @@ st.title('Text Summarization using Pegasus')
9
 
10
  txt = st.text_area('Enter Text to summarize here', '')
11
 
 
 
 
 
 
 
 
 
 
 
12
  if st.button('Summarize'):
13
  with st.spinner('Summarizing..'):
14
  batch = loaded_tokenizer(txt, truncation=True, padding='longest', return_tensors="pt").to(device)
 
1
  import streamlit as st
2
  import joblib,torch
3
  import time
4
+ from PIL import Image
5
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
6
  loaded_tokenizer = joblib.load("finalized_tokenizer.sav")
7
  loaded_model = joblib.load("finalized_model.sav")
 
10
 
11
  txt = st.text_area('Enter Text to summarize here', '')
12
 
13
+ with st.sidebar:
14
+ st.subheader("Text Summarization using Pegasus")
15
+
16
+ st.write("PEGASUS uses an encoder-decoder model for sequence-to-sequence learning. In such a model, the encoder will first take into consideration the context of the whole input text and encode the input text into something called context vector, which is basically a numerical representation of the input text. This numerical representation will then be fed to the decoder whose job is decode the context vector to produce the summary.")
17
+ image =Image.open("Pegasus_model.png")
18
+
19
+ st.image(image, caption='Pegasus Model')
20
+ st.code("App built by Srishti Pandey",language="python")
21
+
22
+
23
  if st.button('Summarize'):
24
  with st.spinner('Summarizing..'):
25
  batch = loaded_tokenizer(txt, truncation=True, padding='longest', return_tensors="pt").to(device)