Spaces:
Runtime error
Runtime error
ambujraj2001
commited on
Commit
·
162df1b
1
Parent(s):
accd3b0
done
Browse files- .gitattributes +1 -0
- app.py +33 -0
- main.py +20 -0
- model.sav +3 -0
- requirements.txt +4 -0
- resnet_architecture.png +0 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.sav filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
from transformers import AutoImageProcessor
|
4 |
+
import torch
|
5 |
+
import joblib
|
6 |
+
|
7 |
+
with st.sidebar:
|
8 |
+
st.subheader('Image Classifier using ResNet50')
|
9 |
+
st.divider()
|
10 |
+
st.write('This is a image classification app using ResNet50. It is a state of the art model for image classification. It is a pretrained model which is trained on a large dataset of images. It can be used for classifying any image. It is a very powerful model and is very fast. It is also very accurate.')
|
11 |
+
image = Image.open('resnet_architecture.png')
|
12 |
+
st.image(image, caption='Bert Model')
|
13 |
+
st.code('App Built by Ambuj Raj',language='python')
|
14 |
+
|
15 |
+
|
16 |
+
st.title('Image Classifier using ResNet50')
|
17 |
+
|
18 |
+
uploaded_file = st.file_uploader("Choose a image", type=['png', 'jpeg', 'jpg'])
|
19 |
+
if uploaded_file is not None:
|
20 |
+
st.image(uploaded_file, width=300)
|
21 |
+
raw_image = Image.open(uploaded_file).convert('RGB')
|
22 |
+
|
23 |
+
if st.button('Classify Image'):
|
24 |
+
with st.spinner('Classifying Image...'):
|
25 |
+
processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
|
26 |
+
loaded_model = joblib.load("model.sav")
|
27 |
+
inputs = processor(raw_image, return_tensors="pt")
|
28 |
+
with torch.no_grad():
|
29 |
+
logits = loaded_model(**inputs).logits
|
30 |
+
# model predicts one of the 1000 ImageNet classes
|
31 |
+
predicted_label = logits.argmax(-1).item()
|
32 |
+
st.success('Image Classified!')
|
33 |
+
st.write('Predicted Label is: ',loaded_model.config.id2label[predicted_label])
|
main.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoImageProcessor, ResNetForImageClassification
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
import joblib
|
5 |
+
|
6 |
+
dataset = load_dataset("huggingface/cats-image")
|
7 |
+
image = dataset["test"]["image"][0]
|
8 |
+
print(image)
|
9 |
+
|
10 |
+
processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
|
11 |
+
|
12 |
+
loaded_model = joblib.load("model.sav")
|
13 |
+
inputs = processor(image, return_tensors="pt")
|
14 |
+
|
15 |
+
with torch.no_grad():
|
16 |
+
logits = loaded_model(**inputs).logits
|
17 |
+
|
18 |
+
# model predicts one of the 1000 ImageNet classes
|
19 |
+
predicted_label = logits.argmax(-1).item()
|
20 |
+
print(loaded_model.config.id2label[predicted_label])
|
model.sav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7b213354ad1d09fe2385e2b4f720cd2e28a1449258f966d5d7e27da72891eaa
|
3 |
+
size 102632052
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
joblib
|
4 |
+
streamlit
|
resnet_architecture.png
ADDED
![]() |