Spaces:
Runtime error
Runtime error
# Copyright 2024 HuggingFace Inc., THUDM, and the LlamaFactory team. | |
# | |
# This code is inspired by the HuggingFace's transformers library and the THUDM's ChatGLM implementation. | |
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/summarization/run_summarization.py | |
# https://github.com/THUDM/ChatGLM-6B/blob/main/ptuning/main.py | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import TYPE_CHECKING, Dict, Optional | |
import numpy as np | |
import torch | |
from transformers.utils import is_jieba_available, is_nltk_available | |
from ...extras.constants import IGNORE_INDEX | |
from ...extras.misc import numpify | |
from ...extras.packages import is_rouge_available | |
if TYPE_CHECKING: | |
from transformers import EvalPrediction, PreTrainedTokenizer | |
if is_jieba_available(): | |
import jieba # type: ignore | |
if is_nltk_available(): | |
from nltk.translate.bleu_score import SmoothingFunction, sentence_bleu | |
if is_rouge_available(): | |
from rouge_chinese import Rouge | |
def eval_logit_processor(logits: "torch.Tensor", labels: "torch.Tensor") -> "torch.Tensor": | |
r""" | |
Computes the token with the largest likelihood to reduce memory footprint. | |
""" | |
if isinstance(logits, (list, tuple)): | |
if logits[0].dim() == 3: # (batch_size, seq_len, vocab_size) | |
logits = logits[0] | |
else: # moe models have aux loss | |
logits = logits[1] | |
if logits.dim() != 3: | |
raise ValueError("Cannot process the logits.") | |
return torch.argmax(logits, dim=-1) | |
class ComputeAccuracy: | |
r""" | |
Computes accuracy and supports `batch_eval_metrics`. | |
""" | |
def _dump(self) -> Optional[Dict[str, float]]: | |
result = None | |
if hasattr(self, "score_dict"): | |
result = {k: float(np.mean(v)) for k, v in self.score_dict.items()} | |
self.score_dict = {"accuracy": []} | |
return result | |
def __post_init__(self): | |
self._dump() | |
def __call__(self, eval_preds: "EvalPrediction", compute_result: bool = True) -> Optional[Dict[str, float]]: | |
preds, labels = numpify(eval_preds.predictions), numpify(eval_preds.label_ids) | |
for i in range(len(preds)): | |
pred, label = preds[i, :-1], labels[i, 1:] | |
label_mask = label != IGNORE_INDEX | |
self.score_dict["accuracy"].append(np.mean(pred[label_mask] == label[label_mask])) | |
if compute_result: | |
return self._dump() | |
class ComputeSimilarity: | |
r""" | |
Computes text similarity scores and supports `batch_eval_metrics`. | |
Wraps the tokenizer into metric functions, used in CustomSeq2SeqTrainer. | |
""" | |
tokenizer: "PreTrainedTokenizer" | |
def _dump(self) -> Optional[Dict[str, float]]: | |
result = None | |
if hasattr(self, "score_dict"): | |
result = {k: float(np.mean(v)) for k, v in self.score_dict.items()} | |
self.score_dict = {"rouge-1": [], "rouge-2": [], "rouge-l": [], "bleu-4": []} | |
return result | |
def __post_init__(self): | |
self._dump() | |
def __call__(self, eval_preds: "EvalPrediction", compute_result: bool = True) -> Optional[Dict[str, float]]: | |
preds, labels = numpify(eval_preds.predictions), numpify(eval_preds.label_ids) | |
preds = np.where(preds != IGNORE_INDEX, preds, self.tokenizer.pad_token_id) | |
labels = np.where(labels != IGNORE_INDEX, labels, self.tokenizer.pad_token_id) | |
decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True) | |
decoded_labels = self.tokenizer.batch_decode(labels, skip_special_tokens=True) | |
for pred, label in zip(decoded_preds, decoded_labels): | |
hypothesis = list(jieba.cut(pred)) | |
reference = list(jieba.cut(label)) | |
if len(" ".join(hypothesis).split()) == 0 or len(" ".join(reference).split()) == 0: | |
result = {"rouge-1": {"f": 0.0}, "rouge-2": {"f": 0.0}, "rouge-l": {"f": 0.0}} | |
else: | |
rouge = Rouge() | |
scores = rouge.get_scores(" ".join(hypothesis), " ".join(reference)) | |
result = scores[0] | |
for k, v in result.items(): | |
self.score_dict[k].append(round(v["f"] * 100, 4)) | |
bleu_score = sentence_bleu([list(label)], list(pred), smoothing_function=SmoothingFunction().method3) | |
self.score_dict["bleu-4"].append(round(bleu_score * 100, 4)) | |
if compute_result: | |
return self._dump() | |