realaer's picture
Upload folder using huggingface_hub
f6f64ac verified
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import asyncio
import os
from contextlib import asynccontextmanager
from functools import partial
from typing import Optional
from typing_extensions import Annotated
from ..chat import ChatModel
from ..extras.misc import torch_gc
from ..extras.packages import is_fastapi_available, is_starlette_available, is_uvicorn_available
from .chat import (
create_chat_completion_response,
create_score_evaluation_response,
create_stream_chat_completion_response,
)
from .protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ModelCard,
ModelList,
ScoreEvaluationRequest,
ScoreEvaluationResponse,
)
if is_fastapi_available():
from fastapi import Depends, FastAPI, HTTPException, status
from fastapi.middleware.cors import CORSMiddleware
from fastapi.security.http import HTTPAuthorizationCredentials, HTTPBearer
if is_starlette_available():
from sse_starlette import EventSourceResponse
if is_uvicorn_available():
import uvicorn
async def sweeper() -> None:
while True:
torch_gc()
await asyncio.sleep(300)
@asynccontextmanager
async def lifespan(app: "FastAPI", chat_model: "ChatModel"): # collects GPU memory
if chat_model.engine_type == "huggingface":
asyncio.create_task(sweeper())
yield
torch_gc()
def create_app(chat_model: "ChatModel") -> "FastAPI":
root_path = os.environ.get("FASTAPI_ROOT_PATH", "")
app = FastAPI(lifespan=partial(lifespan, chat_model=chat_model), root_path=root_path)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
api_key = os.environ.get("API_KEY", None)
security = HTTPBearer(auto_error=False)
async def verify_api_key(auth: Annotated[Optional[HTTPAuthorizationCredentials], Depends(security)]):
if api_key and (auth is None or auth.credentials != api_key):
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid API key.")
@app.get(
"/v1/models",
response_model=ModelList,
status_code=status.HTTP_200_OK,
dependencies=[Depends(verify_api_key)],
)
async def list_models():
model_card = ModelCard(id=os.environ.get("API_MODEL_NAME", "gpt-3.5-turbo"))
return ModelList(data=[model_card])
@app.post(
"/v1/chat/completions",
response_model=ChatCompletionResponse,
status_code=status.HTTP_200_OK,
dependencies=[Depends(verify_api_key)],
)
async def create_chat_completion(request: ChatCompletionRequest):
if not chat_model.engine.can_generate:
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")
if request.stream:
generate = create_stream_chat_completion_response(request, chat_model)
return EventSourceResponse(generate, media_type="text/event-stream")
else:
return await create_chat_completion_response(request, chat_model)
@app.post(
"/v1/score/evaluation",
response_model=ScoreEvaluationResponse,
status_code=status.HTTP_200_OK,
dependencies=[Depends(verify_api_key)],
)
async def create_score_evaluation(request: ScoreEvaluationRequest):
if chat_model.engine.can_generate:
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")
return await create_score_evaluation_response(request, chat_model)
return app
def run_api() -> None:
chat_model = ChatModel()
app = create_app(chat_model)
api_host = os.environ.get("API_HOST", "0.0.0.0")
api_port = int(os.environ.get("API_PORT", "8000"))
print("Visit http://localhost:{}/docs for API document.".format(api_port))
uvicorn.run(app, host=api_host, port=api_port)