Spaces:
Runtime error
Runtime error
Vaibhav Srivastav
commited on
Commit
·
db4c88c
1
Parent(s):
51eeef5
up
Browse files
app.py
CHANGED
@@ -1,417 +1,38 @@
|
|
1 |
-
from __future__ import annotations
|
2 |
-
|
3 |
-
import os
|
4 |
-
import pathlib
|
5 |
-
|
6 |
-
import gradio as gr
|
7 |
-
import numpy as np
|
8 |
import torch
|
9 |
-
import
|
10 |
-
from fairseq2.assets import InProcAssetMetadataProvider, asset_store
|
11 |
-
from huggingface_hub import snapshot_download
|
12 |
-
from seamless_communication.inference import Translator
|
13 |
-
|
14 |
-
from lang_list import (
|
15 |
-
ASR_TARGET_LANGUAGE_NAMES,
|
16 |
-
LANGUAGE_NAME_TO_CODE,
|
17 |
-
S2ST_TARGET_LANGUAGE_NAMES,
|
18 |
-
S2TT_TARGET_LANGUAGE_NAMES,
|
19 |
-
T2ST_TARGET_LANGUAGE_NAMES,
|
20 |
-
T2TT_TARGET_LANGUAGE_NAMES,
|
21 |
-
TEXT_SOURCE_LANGUAGE_NAMES,
|
22 |
-
)
|
23 |
-
|
24 |
-
CHECKPOINTS_PATH = pathlib.Path(os.getenv("CHECKPOINTS_PATH", "/home/user/app/models"))
|
25 |
-
if not CHECKPOINTS_PATH.exists():
|
26 |
-
snapshot_download(repo_id="facebook/seamless-m4t-v2-large", repo_type="model", local_dir=CHECKPOINTS_PATH)
|
27 |
-
asset_store.env_resolvers.clear()
|
28 |
-
asset_store.env_resolvers.append(lambda: "demo")
|
29 |
-
demo_metadata = [
|
30 |
-
{
|
31 |
-
"name": "seamlessM4T_v2_large@demo",
|
32 |
-
"checkpoint": f"file://{CHECKPOINTS_PATH}/seamlessM4T_v2_large.pt",
|
33 |
-
"char_tokenizer": f"file://{CHECKPOINTS_PATH}/spm_char_lang38_tc.model",
|
34 |
-
},
|
35 |
-
{
|
36 |
-
"name": "vocoder_v2@demo",
|
37 |
-
"checkpoint": f"file://{CHECKPOINTS_PATH}/vocoder_v2.pt",
|
38 |
-
},
|
39 |
-
]
|
40 |
-
asset_store.metadata_providers.append(InProcAssetMetadataProvider(demo_metadata))
|
41 |
-
|
42 |
-
DESCRIPTION = """\
|
43 |
-
# SeamlessM4T
|
44 |
-
|
45 |
-
[SeamlessM4T](https://github.com/facebookresearch/seamless_communication) is designed to provide high-quality
|
46 |
-
translation, allowing people from different linguistic communities to communicate effortlessly through speech and text.
|
47 |
-
This unified model enables multiple tasks like Speech-to-Speech (S2ST), Speech-to-Text (S2TT), Text-to-Speech (T2ST)
|
48 |
-
translation and more, without relying on multiple separate models.
|
49 |
-
"""
|
50 |
-
|
51 |
-
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1" and torch.cuda.is_available()
|
52 |
-
|
53 |
-
AUDIO_SAMPLE_RATE = 16000.0
|
54 |
-
MAX_INPUT_AUDIO_LENGTH = 60 # in seconds
|
55 |
-
DEFAULT_TARGET_LANGUAGE = "French"
|
56 |
-
|
57 |
-
if torch.cuda.is_available():
|
58 |
-
device = torch.device("cuda:0")
|
59 |
-
dtype = torch.float16
|
60 |
-
else:
|
61 |
-
device = torch.device("cpu")
|
62 |
-
dtype = torch.float32
|
63 |
-
|
64 |
-
translator = Translator(
|
65 |
-
model_name_or_card="seamlessM4T_v2_large",
|
66 |
-
vocoder_name_or_card="vocoder_v2",
|
67 |
-
device=device,
|
68 |
-
dtype=dtype,
|
69 |
-
apply_mintox=True,
|
70 |
-
)
|
71 |
-
|
72 |
-
|
73 |
-
def preprocess_audio(input_audio: str) -> None:
|
74 |
-
arr, org_sr = torchaudio.load(input_audio)
|
75 |
-
new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
|
76 |
-
max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
|
77 |
-
if new_arr.shape[1] > max_length:
|
78 |
-
new_arr = new_arr[:, :max_length]
|
79 |
-
gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.")
|
80 |
-
torchaudio.save(input_audio, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE))
|
81 |
-
|
82 |
-
|
83 |
-
def run_s2st(
|
84 |
-
input_audio: str, source_language: str, target_language: str
|
85 |
-
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
86 |
-
preprocess_audio(input_audio)
|
87 |
-
source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
|
88 |
-
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
89 |
-
out_texts, out_audios = translator.predict(
|
90 |
-
input=input_audio,
|
91 |
-
task_str="S2ST",
|
92 |
-
src_lang=source_language_code,
|
93 |
-
tgt_lang=target_language_code,
|
94 |
-
)
|
95 |
-
out_text = str(out_texts[0])
|
96 |
-
out_wav = out_audios.audio_wavs[0].cpu().detach().numpy()
|
97 |
-
return (int(AUDIO_SAMPLE_RATE), out_wav), out_text
|
98 |
-
|
99 |
-
|
100 |
-
def run_s2tt(input_audio: str, source_language: str, target_language: str) -> str:
|
101 |
-
preprocess_audio(input_audio)
|
102 |
-
source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
|
103 |
-
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
104 |
-
out_texts, _ = translator.predict(
|
105 |
-
input=input_audio,
|
106 |
-
task_str="S2TT",
|
107 |
-
src_lang=source_language_code,
|
108 |
-
tgt_lang=target_language_code,
|
109 |
-
)
|
110 |
-
return str(out_texts[0])
|
111 |
-
|
112 |
-
|
113 |
-
def run_t2st(input_text: str, source_language: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
|
114 |
-
source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
|
115 |
-
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
116 |
-
out_texts, out_audios = translator.predict(
|
117 |
-
input=input_text,
|
118 |
-
task_str="T2ST",
|
119 |
-
src_lang=source_language_code,
|
120 |
-
tgt_lang=target_language_code,
|
121 |
-
)
|
122 |
-
out_text = str(out_texts[0])
|
123 |
-
out_wav = out_audios.audio_wavs[0].cpu().detach().numpy()
|
124 |
-
return (int(AUDIO_SAMPLE_RATE), out_wav), out_text
|
125 |
-
|
126 |
-
|
127 |
-
def run_t2tt(input_text: str, source_language: str, target_language: str) -> str:
|
128 |
-
source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
|
129 |
-
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
130 |
-
out_texts, _ = translator.predict(
|
131 |
-
input=input_text,
|
132 |
-
task_str="T2TT",
|
133 |
-
src_lang=source_language_code,
|
134 |
-
tgt_lang=target_language_code,
|
135 |
-
)
|
136 |
-
return str(out_texts[0])
|
137 |
-
|
138 |
-
|
139 |
-
def run_asr(input_audio: str, target_language: str) -> str:
|
140 |
-
preprocess_audio(input_audio)
|
141 |
-
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
142 |
-
out_texts, _ = translator.predict(
|
143 |
-
input=input_audio,
|
144 |
-
task_str="ASR",
|
145 |
-
src_lang=target_language_code,
|
146 |
-
tgt_lang=target_language_code,
|
147 |
-
)
|
148 |
-
return str(out_texts[0])
|
149 |
-
|
150 |
-
|
151 |
-
with gr.Blocks() as demo_s2st:
|
152 |
-
with gr.Row():
|
153 |
-
with gr.Column():
|
154 |
-
with gr.Group():
|
155 |
-
input_audio = gr.Audio(label="Input speech", type="filepath")
|
156 |
-
source_language = gr.Dropdown(
|
157 |
-
label="Source language",
|
158 |
-
choices=ASR_TARGET_LANGUAGE_NAMES,
|
159 |
-
value="English",
|
160 |
-
)
|
161 |
-
target_language = gr.Dropdown(
|
162 |
-
label="Target language",
|
163 |
-
choices=S2ST_TARGET_LANGUAGE_NAMES,
|
164 |
-
value=DEFAULT_TARGET_LANGUAGE,
|
165 |
-
)
|
166 |
-
btn = gr.Button("Translate")
|
167 |
-
with gr.Column():
|
168 |
-
with gr.Group():
|
169 |
-
output_audio = gr.Audio(
|
170 |
-
label="Translated speech",
|
171 |
-
autoplay=False,
|
172 |
-
streaming=False,
|
173 |
-
type="numpy",
|
174 |
-
)
|
175 |
-
output_text = gr.Textbox(label="Translated text")
|
176 |
-
|
177 |
-
gr.Examples(
|
178 |
-
examples=[
|
179 |
-
["assets/sample_input.mp3", "English", "French"],
|
180 |
-
["assets/sample_input.mp3", "English", "Mandarin Chinese"],
|
181 |
-
["assets/sample_input_2.mp3", "English", "Hindi"],
|
182 |
-
["assets/sample_input_2.mp3", "English", "Spanish"],
|
183 |
-
],
|
184 |
-
inputs=[input_audio, source_language, target_language],
|
185 |
-
outputs=[output_audio, output_text],
|
186 |
-
fn=run_s2st,
|
187 |
-
cache_examples=CACHE_EXAMPLES,
|
188 |
-
api_name=False,
|
189 |
-
)
|
190 |
-
|
191 |
-
btn.click(
|
192 |
-
fn=run_s2st,
|
193 |
-
inputs=[input_audio, source_language, target_language],
|
194 |
-
outputs=[output_audio, output_text],
|
195 |
-
api_name="s2st",
|
196 |
-
)
|
197 |
-
|
198 |
-
with gr.Blocks() as demo_s2tt:
|
199 |
-
with gr.Row():
|
200 |
-
with gr.Column():
|
201 |
-
with gr.Group():
|
202 |
-
input_audio = gr.Audio(label="Input speech", type="filepath")
|
203 |
-
source_language = gr.Dropdown(
|
204 |
-
label="Source language",
|
205 |
-
choices=ASR_TARGET_LANGUAGE_NAMES,
|
206 |
-
value="English",
|
207 |
-
)
|
208 |
-
target_language = gr.Dropdown(
|
209 |
-
label="Target language",
|
210 |
-
choices=S2TT_TARGET_LANGUAGE_NAMES,
|
211 |
-
value=DEFAULT_TARGET_LANGUAGE,
|
212 |
-
)
|
213 |
-
btn = gr.Button("Translate")
|
214 |
-
with gr.Column():
|
215 |
-
output_text = gr.Textbox(label="Translated text")
|
216 |
-
|
217 |
-
gr.Examples(
|
218 |
-
examples=[
|
219 |
-
["assets/sample_input.mp3", "English", "French"],
|
220 |
-
["assets/sample_input.mp3", "English", "Mandarin Chinese"],
|
221 |
-
["assets/sample_input_2.mp3", "English", "Hindi"],
|
222 |
-
["assets/sample_input_2.mp3", "English", "Spanish"],
|
223 |
-
],
|
224 |
-
inputs=[input_audio, source_language, target_language],
|
225 |
-
outputs=output_text,
|
226 |
-
fn=run_s2tt,
|
227 |
-
cache_examples=CACHE_EXAMPLES,
|
228 |
-
api_name=False,
|
229 |
-
)
|
230 |
-
|
231 |
-
btn.click(
|
232 |
-
fn=run_s2tt,
|
233 |
-
inputs=[input_audio, source_language, target_language],
|
234 |
-
outputs=output_text,
|
235 |
-
api_name="s2tt",
|
236 |
-
)
|
237 |
-
|
238 |
-
with gr.Blocks() as demo_t2st:
|
239 |
-
with gr.Row():
|
240 |
-
with gr.Column():
|
241 |
-
with gr.Group():
|
242 |
-
input_text = gr.Textbox(label="Input text")
|
243 |
-
with gr.Row():
|
244 |
-
source_language = gr.Dropdown(
|
245 |
-
label="Source language",
|
246 |
-
choices=TEXT_SOURCE_LANGUAGE_NAMES,
|
247 |
-
value="English",
|
248 |
-
)
|
249 |
-
target_language = gr.Dropdown(
|
250 |
-
label="Target language",
|
251 |
-
choices=T2ST_TARGET_LANGUAGE_NAMES,
|
252 |
-
value=DEFAULT_TARGET_LANGUAGE,
|
253 |
-
)
|
254 |
-
btn = gr.Button("Translate")
|
255 |
-
with gr.Column():
|
256 |
-
with gr.Group():
|
257 |
-
output_audio = gr.Audio(
|
258 |
-
label="Translated speech",
|
259 |
-
autoplay=False,
|
260 |
-
streaming=False,
|
261 |
-
type="numpy",
|
262 |
-
)
|
263 |
-
output_text = gr.Textbox(label="Translated text")
|
264 |
-
|
265 |
-
gr.Examples(
|
266 |
-
examples=[
|
267 |
-
[
|
268 |
-
"My favorite animal is the elephant.",
|
269 |
-
"English",
|
270 |
-
"French",
|
271 |
-
],
|
272 |
-
[
|
273 |
-
"My favorite animal is the elephant.",
|
274 |
-
"English",
|
275 |
-
"Mandarin Chinese",
|
276 |
-
],
|
277 |
-
[
|
278 |
-
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
279 |
-
"English",
|
280 |
-
"Hindi",
|
281 |
-
],
|
282 |
-
[
|
283 |
-
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
284 |
-
"English",
|
285 |
-
"Spanish",
|
286 |
-
],
|
287 |
-
],
|
288 |
-
inputs=[input_text, source_language, target_language],
|
289 |
-
outputs=[output_audio, output_text],
|
290 |
-
fn=run_t2st,
|
291 |
-
cache_examples=CACHE_EXAMPLES,
|
292 |
-
api_name=False,
|
293 |
-
)
|
294 |
-
|
295 |
-
gr.on(
|
296 |
-
triggers=[input_text.submit, btn.click],
|
297 |
-
fn=run_t2st,
|
298 |
-
inputs=[input_text, source_language, target_language],
|
299 |
-
outputs=[output_audio, output_text],
|
300 |
-
api_name="t2st",
|
301 |
-
)
|
302 |
-
|
303 |
-
with gr.Blocks() as demo_t2tt:
|
304 |
-
with gr.Row():
|
305 |
-
with gr.Column():
|
306 |
-
with gr.Group():
|
307 |
-
input_text = gr.Textbox(label="Input text")
|
308 |
-
with gr.Row():
|
309 |
-
source_language = gr.Dropdown(
|
310 |
-
label="Source language",
|
311 |
-
choices=TEXT_SOURCE_LANGUAGE_NAMES,
|
312 |
-
value="English",
|
313 |
-
)
|
314 |
-
target_language = gr.Dropdown(
|
315 |
-
label="Target language",
|
316 |
-
choices=T2TT_TARGET_LANGUAGE_NAMES,
|
317 |
-
value=DEFAULT_TARGET_LANGUAGE,
|
318 |
-
)
|
319 |
-
btn = gr.Button("Translate")
|
320 |
-
with gr.Column():
|
321 |
-
output_text = gr.Textbox(label="Translated text")
|
322 |
-
|
323 |
-
gr.Examples(
|
324 |
-
examples=[
|
325 |
-
[
|
326 |
-
"My favorite animal is the elephant.",
|
327 |
-
"English",
|
328 |
-
"French",
|
329 |
-
],
|
330 |
-
[
|
331 |
-
"My favorite animal is the elephant.",
|
332 |
-
"English",
|
333 |
-
"Mandarin Chinese",
|
334 |
-
],
|
335 |
-
[
|
336 |
-
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
337 |
-
"English",
|
338 |
-
"Hindi",
|
339 |
-
],
|
340 |
-
[
|
341 |
-
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
342 |
-
"English",
|
343 |
-
"Spanish",
|
344 |
-
],
|
345 |
-
],
|
346 |
-
inputs=[input_text, source_language, target_language],
|
347 |
-
outputs=output_text,
|
348 |
-
fn=run_t2tt,
|
349 |
-
cache_examples=CACHE_EXAMPLES,
|
350 |
-
api_name=False,
|
351 |
-
)
|
352 |
-
|
353 |
-
gr.on(
|
354 |
-
triggers=[input_text.submit, btn.click],
|
355 |
-
fn=run_t2tt,
|
356 |
-
inputs=[input_text, source_language, target_language],
|
357 |
-
outputs=output_text,
|
358 |
-
api_name="t2tt",
|
359 |
-
)
|
360 |
-
|
361 |
-
with gr.Blocks() as demo_asr:
|
362 |
-
with gr.Row():
|
363 |
-
with gr.Column():
|
364 |
-
with gr.Group():
|
365 |
-
input_audio = gr.Audio(label="Input speech", type="filepath")
|
366 |
-
target_language = gr.Dropdown(
|
367 |
-
label="Target language",
|
368 |
-
choices=ASR_TARGET_LANGUAGE_NAMES,
|
369 |
-
value=DEFAULT_TARGET_LANGUAGE,
|
370 |
-
)
|
371 |
-
btn = gr.Button("Translate")
|
372 |
-
with gr.Column():
|
373 |
-
output_text = gr.Textbox(label="Translated text")
|
374 |
-
|
375 |
-
gr.Examples(
|
376 |
-
examples=[
|
377 |
-
["assets/sample_input.mp3", "English"],
|
378 |
-
["assets/sample_input_2.mp3", "English"],
|
379 |
-
],
|
380 |
-
inputs=[input_audio, target_language],
|
381 |
-
outputs=output_text,
|
382 |
-
fn=run_asr,
|
383 |
-
cache_examples=CACHE_EXAMPLES,
|
384 |
-
api_name=False,
|
385 |
-
)
|
386 |
-
|
387 |
-
btn.click(
|
388 |
-
fn=run_asr,
|
389 |
-
inputs=[input_audio, target_language],
|
390 |
-
outputs=output_text,
|
391 |
-
api_name="asr",
|
392 |
-
)
|
393 |
-
|
394 |
-
|
395 |
-
with gr.Blocks(css="style.css") as demo:
|
396 |
-
gr.Markdown(DESCRIPTION)
|
397 |
-
gr.DuplicateButton(
|
398 |
-
value="Duplicate Space for private use",
|
399 |
-
elem_id="duplicate-button",
|
400 |
-
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
401 |
-
)
|
402 |
-
|
403 |
-
with gr.Tabs():
|
404 |
-
with gr.Tab(label="S2ST"):
|
405 |
-
demo_s2st.render()
|
406 |
-
with gr.Tab(label="S2TT"):
|
407 |
-
demo_s2tt.render()
|
408 |
-
with gr.Tab(label="T2ST"):
|
409 |
-
demo_t2st.render()
|
410 |
-
with gr.Tab(label="T2TT"):
|
411 |
-
demo_t2tt.render()
|
412 |
-
with gr.Tab(label="ASR"):
|
413 |
-
demo_asr.render()
|
414 |
|
|
|
|
|
415 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
416 |
if __name__ == "__main__":
|
417 |
-
demo.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
from einops import rearrange
|
5 |
+
import gradio as gr
|
6 |
|
7 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
8 |
+
|
9 |
+
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
|
10 |
+
|
11 |
+
device = "cuda"
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
|
13 |
+
model = MambaLMHeadModel.from_pretrained("state-spaces/mamba-130m", device=device, dtype=torch.float16)
|
14 |
+
|
15 |
+
def pred(text_in):
|
16 |
+
tokens = tokenizer(text_in, return_tensors="pt")
|
17 |
+
input_ids = tokens.input_ids.to(device=device)
|
18 |
+
attn_mask = tokens.attention_mask.to(device=device)
|
19 |
+
max_length = input_ids.shape[1] + 100
|
20 |
+
fn = lambda: model.generate(
|
21 |
+
input_ids=input_ids,
|
22 |
+
max_length=max_length,
|
23 |
+
cg=True,
|
24 |
+
return_dict_in_generate=True,
|
25 |
+
output_scores=True,
|
26 |
+
enable_timing=False,
|
27 |
+
temperature=1.0,
|
28 |
+
top_k=1,
|
29 |
+
top_p=1.0,
|
30 |
+
)
|
31 |
+
out = fn()
|
32 |
+
text_out = tokenizer.batch_decode(out.sequences.tolist())
|
33 |
+
return text_out
|
34 |
+
|
35 |
+
demo = gr.Interface(fn=pred, inputs="text", outputs="text")
|
36 |
+
|
37 |
if __name__ == "__main__":
|
38 |
+
demo.launch()
|