reach-vb HF staff sanchit-gandhi commited on
Commit
b2a3e8a
·
0 Parent(s):

Duplicate from sanchit-gandhi/leaderboards

Browse files

Co-authored-by: Sanchit Gandhi <sanchit-gandhi@users.noreply.huggingface.co>

Files changed (4) hide show
  1. README.md +16 -0
  2. app.py +249 -0
  3. requirements.txt +4 -0
  4. utils.py +324 -0
README.md ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Leaderboards
3
+ emoji: 📈
4
+ colorFrom: red
5
+ colorTo: yellow
6
+ sdk: streamlit
7
+ sdk_version: 1.10.0
8
+ python_version: 3.8.9
9
+ app_file: app.py
10
+ pinned: false
11
+ license: apache-2.0
12
+ duplicated_from: sanchit-gandhi/leaderboards
13
+ ---
14
+
15
+
16
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
app.py ADDED
@@ -0,0 +1,249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import streamlit as st
3
+ from huggingface_hub import HfApi
4
+ from utils import ascending_metrics, metric_ranges, CV11_LANGUAGES, FLEURS_LANGUAGES
5
+ import numpy as np
6
+ from st_aggrid import AgGrid, GridOptionsBuilder, JsCode
7
+ from os.path import exists
8
+ import threading
9
+
10
+ st.set_page_config(layout="wide")
11
+
12
+
13
+ def get_model_infos():
14
+ api = HfApi()
15
+ model_infos = api.list_models(filter="model-index", cardData=True)
16
+ return model_infos
17
+
18
+
19
+ def parse_metric_value(value):
20
+ if isinstance(value, str):
21
+ "".join(value.split("%"))
22
+ try:
23
+ value = float(value)
24
+ except: # noqa: E722
25
+ value = None
26
+ elif isinstance(value, list):
27
+ if len(value) > 0:
28
+ value = value[0]
29
+ else:
30
+ value = None
31
+ value = round(value, 4) if isinstance(value, float) else None
32
+ return value
33
+
34
+
35
+ def parse_metrics_rows(meta, only_verified=False):
36
+ if not isinstance(meta["model-index"], list) or len(meta["model-index"]) == 0 or "results" not in meta["model-index"][0]:
37
+ return None
38
+ for result in meta["model-index"][0]["results"]:
39
+ if not isinstance(result, dict) or "dataset" not in result or "metrics" not in result or "type" not in result["dataset"]:
40
+ continue
41
+ dataset = result["dataset"]["type"]
42
+ if dataset == "":
43
+ continue
44
+ row = {"dataset": dataset, "split": "-unspecified-", "config": "-unspecified-"}
45
+ if "split" in result["dataset"]:
46
+ row["split"] = result["dataset"]["split"]
47
+ if "config" in result["dataset"]:
48
+ row["config"] = result["dataset"]["config"]
49
+ no_results = True
50
+ incorrect_results = False
51
+ for metric in result["metrics"]:
52
+ name = metric["type"].lower().strip()
53
+
54
+ if name in ("model_id", "dataset", "split", "config", "pipeline_tag", "only_verified"):
55
+ # Metrics are not allowed to be named "dataset", "split", "config", "pipeline_tag"
56
+ continue
57
+ value = parse_metric_value(metric.get("value", None))
58
+ if value is None:
59
+ continue
60
+ if name in row:
61
+ new_metric_better = value < row[name] if name in ascending_metrics else value > row[name]
62
+ if name not in row or new_metric_better:
63
+ # overwrite the metric if the new value is better.
64
+
65
+ if only_verified:
66
+ if "verified" in metric and metric["verified"]:
67
+ no_results = False
68
+ row[name] = value
69
+ if name in metric_ranges:
70
+ if value < metric_ranges[name][0] or value > metric_ranges[name][1]:
71
+ incorrect_results = True
72
+ else:
73
+ no_results = False
74
+ row[name] = value
75
+ if name in metric_ranges:
76
+ if value < metric_ranges[name][0] or value > metric_ranges[name][1]:
77
+ incorrect_results = True
78
+ if no_results or incorrect_results:
79
+ continue
80
+ yield row
81
+
82
+
83
+ @st.cache(ttl=0)
84
+ def get_data_wrapper():
85
+ def get_data(dataframe=None, verified_dataframe=None):
86
+ data = []
87
+ verified_data = []
88
+ print("getting model infos")
89
+ model_infos = get_model_infos()
90
+ print("got model infos")
91
+ for model_info in model_infos:
92
+ meta = model_info.cardData
93
+ if meta is None:
94
+ continue
95
+ for row in parse_metrics_rows(meta):
96
+ if row is None:
97
+ continue
98
+ row["model_id"] = model_info.id
99
+ row["pipeline_tag"] = model_info.pipeline_tag
100
+ row["only_verified"] = False
101
+ data.append(row)
102
+ for row in parse_metrics_rows(meta, only_verified=True):
103
+ if row is None:
104
+ continue
105
+ row["model_id"] = model_info.id
106
+ row["pipeline_tag"] = model_info.pipeline_tag
107
+ row["only_verified"] = True
108
+ data.append(row)
109
+ dataframe = pd.DataFrame.from_records(data)
110
+ dataframe.to_pickle("cache.pkl")
111
+
112
+ if exists("cache.pkl"):
113
+ # If we have saved the results previously, call an asynchronous process
114
+ # to fetch the results and update the saved file. Don't make users wait
115
+ # while we fetch the new results. Instead, display the old results for
116
+ # now. The new results should be loaded when this method
117
+ # is called again.
118
+ dataframe = pd.read_pickle("cache.pkl")
119
+ t = threading.Thread(name="get_data procs", target=get_data)
120
+ t.start()
121
+ else:
122
+ # We have to make the users wait during the first startup of this app.
123
+ get_data()
124
+ dataframe = pd.read_pickle("cache.pkl")
125
+
126
+ return dataframe
127
+
128
+
129
+ dataframe = get_data_wrapper()
130
+
131
+ st.markdown("# 🤗 Whisper Event: Final Leaderboard")
132
+
133
+ # query params are used to refine the browser URL as more options are selected
134
+ query_params = st.experimental_get_query_params()
135
+ if "first_query_params" not in st.session_state:
136
+ st.session_state.first_query_params = query_params
137
+ first_query_params = st.session_state.first_query_params
138
+
139
+ # define the scope of the leaderboard
140
+ only_verified_results = False
141
+ task = "automatic-speech-recognition"
142
+ selectable_datasets = ["mozilla-foundation/common_voice_11_0", "google/fleurs"]
143
+ dataset_mapping = {"mozilla-foundation/common_voice_11_0": "Common Voice 11", "google/fleurs": "FLEURS"} # get a 'pretty' name for our datasets
144
+ split = "test"
145
+ selectable_metrics = ["wer", "cer"]
146
+ default_metric = selectable_metrics[0]
147
+
148
+ # select dataset from list provided
149
+ dataset = st.sidebar.selectbox(
150
+ "Dataset",
151
+ selectable_datasets,
152
+ help="Select a dataset to see the leaderboard!"
153
+ )
154
+ dataset_name = dataset_mapping[dataset]
155
+
156
+ # slice dataframe to entries of interest
157
+ dataframe = dataframe[dataframe.only_verified == only_verified_results]
158
+ dataset_df = dataframe[dataframe.dataset == dataset]
159
+ dataset_df = dataset_df[dataset_df.split == split] # hardcoded to "test"
160
+ dataset_df = dataset_df.dropna(axis="columns", how="all")
161
+
162
+ # get potential dataset configs (languages)
163
+ selectable_configs = list(set(dataset_df["config"]))
164
+ selectable_configs.sort(key=lambda name: name.lower())
165
+
166
+ if "-unspecified-" in selectable_configs:
167
+ selectable_configs.remove("-unspecified-")
168
+
169
+ if dataset == "mozilla-foundation/common_voice_11_0":
170
+ selectable_configs = [config for config in selectable_configs if config in CV11_LANGUAGES]
171
+ visual_configs = [f"{config}: {CV11_LANGUAGES[config]}" for config in selectable_configs]
172
+ elif dataset == "google/fleurs":
173
+ selectable_configs = [config for config in selectable_configs if config in FLEURS_LANGUAGES]
174
+ visual_configs = [f"{config}: {FLEURS_LANGUAGES[config]}" for config in selectable_configs]
175
+
176
+ config = st.sidebar.selectbox(
177
+ "Language",
178
+ visual_configs,
179
+ help="Filter the results on the current leaderboard by language."
180
+ )
181
+ config, language = config.split(":")
182
+
183
+ # just for show -> we've fixed the split to "test"
184
+ split = st.sidebar.selectbox(
185
+ "Split",
186
+ [split],
187
+ index=0,
188
+ help="View the results for the `test` split for evaluation performance.",
189
+ )
190
+
191
+ # update browser URL with selections
192
+ current_query_params = {"dataset": [dataset], "config": [config], "split": split}
193
+ st.experimental_set_query_params(**current_query_params)
194
+
195
+ dataset_df = dataset_df[dataset_df.config == config]
196
+
197
+ dataset_df = dataset_df.filter(["model_id"] + (["dataset"] if dataset == "-any-" else []) + selectable_metrics)
198
+ dataset_df = dataset_df.dropna(thresh=2) # Want at least two non-na values (one for model_id and one for a metric).
199
+
200
+ sorting_metric = st.sidebar.radio(
201
+ "Sorting Metric",
202
+ selectable_metrics,
203
+ index=selectable_metrics.index(default_metric) if default_metric in selectable_metrics else 0,
204
+ help="Select the metric to sort the leaderboard by. Click on the metric name in the leaderboard to reverse the sorting order."
205
+ )
206
+
207
+ st.markdown(
208
+ f"This is the leaderboard for {dataset_name} {language} ({config})."
209
+ )
210
+
211
+ st.markdown(
212
+ "Please click on the model's name to be redirected to its model card."
213
+ )
214
+
215
+ st.markdown(
216
+ "Want to beat the leaderboard? Don't see your model here? Ensure..."
217
+ )
218
+
219
+ # Make the default metric appear right after model names and dataset names
220
+ cols = dataset_df.columns.tolist()
221
+ cols.remove(sorting_metric)
222
+ sorting_metric_index = 1 if dataset != "-any-" else 2
223
+ cols = cols[:sorting_metric_index] + [sorting_metric] + cols[sorting_metric_index:]
224
+ dataset_df = dataset_df[cols]
225
+
226
+ # Sort the leaderboard, giving the sorting metric highest priority and then ordering by other metrics in the case of equal values.
227
+ dataset_df = dataset_df.sort_values(by=cols[sorting_metric_index:], ascending=[metric in ascending_metrics for metric in cols[sorting_metric_index:]])
228
+ dataset_df = dataset_df.replace(np.nan, '-')
229
+
230
+ # Make the leaderboard
231
+ gb = GridOptionsBuilder.from_dataframe(dataset_df)
232
+ gb.configure_default_column(sortable=False)
233
+ gb.configure_column(
234
+ "model_id",
235
+ cellRenderer=JsCode('''function(params) {return '<a target="_blank" href="https://huggingface.co/'+params.value+'">'+params.value+'</a>'}'''),
236
+ )
237
+
238
+ for name in selectable_metrics:
239
+ gb.configure_column(name, type=["numericColumn", "numberColumnFilter", "customNumericFormat"], precision=2, aggFunc='sum')
240
+
241
+ gb.configure_column(
242
+ sorting_metric,
243
+ sortable=True,
244
+ cellStyle=JsCode('''function(params) { return {'backgroundColor': '#FFD21E'}}''')
245
+ )
246
+
247
+ go = gb.build()
248
+ fit_columns = len(dataset_df.columns) < 10
249
+ AgGrid(dataset_df, gridOptions=go, height=28*len(dataset_df) + (35 if fit_columns else 41), allow_unsafe_jscode=True, fit_columns_on_grid_load=fit_columns, enable_enterprise_modules=False)
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ pandas==1.5.1
2
+ huggingface_hub==0.11.1
3
+ numpy==1.23.4
4
+ streamlit-aggrid==0.3.3
utils.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ascending_metrics = {
2
+ "wer",
3
+ "cer",
4
+ "loss",
5
+ "mae",
6
+ "mahalanobis",
7
+ "mse",
8
+ "perplexity",
9
+ "ter",
10
+ }
11
+
12
+ metric_ranges = {
13
+ "accuracy": (0,1),
14
+ "precision": (0,1),
15
+ "recall": (0,1),
16
+ "macro f1": (0,1),
17
+ "micro f1": (0,1),
18
+ "pearson": (-1, 1),
19
+ "matthews_correlation": (-1, 1),
20
+ "spearmanr": (-1, 1),
21
+ "google_bleu": (0, 1),
22
+ "precision@10": (0, 1),
23
+ "mae": (0, 1),
24
+ "mauve": (0, 1),
25
+ "frontier_integral": (0, 1),
26
+ "mean_iou": (0, 1),
27
+ "mean_accuracy": (0, 1),
28
+ "overall_accuracy": (0, 1),
29
+ "meteor": (0, 1),
30
+ "mse": (0, 1),
31
+ "perplexity": (0, float("inf")),
32
+ "rogue1": (0, 1),
33
+ "rogue2": (0, 1),
34
+ "sari": (0, 100),
35
+ }
36
+
37
+ CV11_LANGUAGES = {
38
+ 'ab': 'Abkhaz',
39
+ 'ace': 'Acehnese',
40
+ 'ady': 'Adyghe',
41
+ 'af': 'Afrikaans',
42
+ 'am': 'Amharic',
43
+ 'an': 'Aragonese',
44
+ 'ar': 'Arabic',
45
+ 'arn': 'Mapudungun',
46
+ 'as': 'Assamese',
47
+ 'ast': 'Asturian',
48
+ 'az': 'Azerbaijani',
49
+ 'ba': 'Bashkir',
50
+ 'bas': 'Basaa',
51
+ 'be': 'Belarusian',
52
+ 'bg': 'Bulgarian',
53
+ 'bn': 'Bengali',
54
+ 'br': 'Breton',
55
+ 'bs': 'Bosnian',
56
+ 'bxr': 'Buryat',
57
+ 'ca': 'Catalan',
58
+ 'cak': 'Kaqchikel',
59
+ 'ckb': 'Central Kurdish',
60
+ 'cnh': 'Hakha Chin',
61
+ 'co': 'Corsican',
62
+ 'cs': 'Czech',
63
+ 'cv': 'Chuvash',
64
+ 'cy': 'Welsh',
65
+ 'da': 'Danish',
66
+ 'de': 'German',
67
+ 'dsb': 'Sorbian, Lower',
68
+ 'dv': 'Dhivehi',
69
+ 'dyu': 'Dioula',
70
+ 'el': 'Greek',
71
+ 'en': 'English',
72
+ 'eo': 'Esperanto',
73
+ 'es': 'Spanish',
74
+ 'et': 'Estonian',
75
+ 'eu': 'Basque',
76
+ 'fa': 'Persian',
77
+ 'ff': 'Fulah',
78
+ 'fi': 'Finnish',
79
+ 'fo': 'Faroese',
80
+ 'fr': 'French',
81
+ 'fy-NL': 'Frisian',
82
+ 'ga-IE': 'Irish',
83
+ 'gl': 'Galician',
84
+ 'gn': 'Guarani',
85
+ 'gom': 'Goan Konkani',
86
+ 'ha': 'Hausa',
87
+ 'he': 'Hebrew',
88
+ 'hi': 'Hindi',
89
+ 'hil': 'Hiligaynon',
90
+ 'hr': 'Croatian',
91
+ 'hsb': 'Sorbian, Upper',
92
+ 'ht': 'Haitian',
93
+ 'hu': 'Hungarian',
94
+ 'hy-AM': 'Armenian',
95
+ 'hyw': 'Armenian Western',
96
+ 'ia': 'Interlingua',
97
+ 'id': 'Indonesian',
98
+ 'ie': 'Interlingue',
99
+ 'ig': 'Igbo',
100
+ 'is': 'Icelandic',
101
+ 'it': 'Italian',
102
+ 'izh': 'Izhorian',
103
+ 'ja': 'Japanese',
104
+ 'jbo': 'Lojban',
105
+ 'ka': 'Georgian',
106
+ 'kaa': 'Karakalpak',
107
+ 'kab': 'Kabyle',
108
+ 'kbd': 'Kabardian',
109
+ 'ki': 'Kikuyu',
110
+ 'kk': 'Kazakh',
111
+ 'km': 'Khmer',
112
+ 'kmr': 'Kurmanji Kurdish',
113
+ 'kn': 'Kannada',
114
+ 'knn': 'Konkani (Devanagari)',
115
+ 'ko': 'Korean',
116
+ 'kpv': 'Komi-Zyrian',
117
+ 'kw': 'Cornish',
118
+ 'ky': 'Kyrgyz',
119
+ 'lb': 'Luxembourgish',
120
+ 'lg': 'Luganda',
121
+ 'lij': 'Ligurian',
122
+ 'ln': 'Lingala',
123
+ 'lo': 'Lao',
124
+ 'lt': 'Lithuanian',
125
+ 'lv': 'Latvian',
126
+ 'mai': 'Maithili',
127
+ 'mdf': 'Moksha',
128
+ 'mg': 'Malagasy',
129
+ 'mhr': 'Meadow Mari',
130
+ 'mk': 'Macedonian',
131
+ 'ml': 'Malayalam',
132
+ 'mn': 'Mongolian',
133
+ 'mni': 'Meetei Lon',
134
+ 'mos': 'Mossi',
135
+ 'mr': 'Marathi',
136
+ 'mrj': 'Hill Mari',
137
+ 'ms': 'Malay',
138
+ 'mt': 'Maltese',
139
+ 'my': 'Burmese',
140
+ 'myv': 'Erzya',
141
+ 'nan-tw': 'Taiwanese (Minnan)',
142
+ 'nb-NO': 'Norwegian Bokmål',
143
+ 'nd': 'IsiNdebele (North)',
144
+ 'ne-NP': 'Nepali',
145
+ 'nia': 'Nias',
146
+ 'nl': 'Dutch',
147
+ 'nn-NO': 'Norwegian Nynorsk',
148
+ 'nr': 'IsiNdebele (South)',
149
+ 'nso': 'Northern Sotho',
150
+ 'nyn': 'Runyankole',
151
+ 'oc': 'Occitan',
152
+ 'om': 'Afaan Ormoo',
153
+ 'or': 'Odia',
154
+ 'pa-IN': 'Punjabi',
155
+ 'pap-AW': 'Papiamento (Aruba)',
156
+ 'pl': 'Polish',
157
+ 'ps': 'Pashto',
158
+ 'pt': 'Portuguese',
159
+ 'quc': "K'iche'",
160
+ 'quy': 'Quechua Chanka',
161
+ 'rm-sursilv': 'Romansh Sursilvan',
162
+ 'rm-vallader': 'Romansh Vallader',
163
+ 'ro': 'Romanian',
164
+ 'ru': 'Russian',
165
+ 'rw': 'Kinyarwanda',
166
+ 'sah': 'Sakha',
167
+ 'sat': 'Santali (Ol Chiki)',
168
+ 'sc': 'Sardinian',
169
+ 'scn': 'Sicilian',
170
+ 'sdh': 'Southern Kurdish',
171
+ 'shi': 'Shilha',
172
+ 'si': 'Sinhala',
173
+ 'sk': 'Slovak',
174
+ 'skr': 'Saraiki',
175
+ 'sl': 'Slovenian',
176
+ 'snk': 'Soninke',
177
+ 'so': 'Somali',
178
+ 'sq': 'Albanian',
179
+ 'sr': 'Serbian',
180
+ 'ss': 'Siswati',
181
+ 'st': 'Southern Sotho',
182
+ 'sv-SE': 'Swedish',
183
+ 'sw': 'Swahili',
184
+ 'syr': 'Syriac',
185
+ 'ta': 'Tamil',
186
+ 'te': 'Telugu',
187
+ 'tg': 'Tajik',
188
+ 'th': 'Thai',
189
+ 'ti': 'Tigrinya',
190
+ 'tig': 'Tigre',
191
+ 'tk': 'Turkmen',
192
+ 'tl': 'Tagalog',
193
+ 'tn': 'Setswana',
194
+ 'tok': 'Toki Pona',
195
+ 'tr': 'Turkish',
196
+ 'ts': 'Xitsonga',
197
+ 'tt': 'Tatar',
198
+ 'tw': 'Twi',
199
+ 'ty': 'Tahitian',
200
+ 'uby': 'Ubykh',
201
+ 'udm': 'Udmurt',
202
+ 'ug': 'Uyghur',
203
+ 'uk': 'Ukrainian',
204
+ 'ur': 'Urdu',
205
+ 'uz': 'Uzbek',
206
+ 've': 'Tshivenda',
207
+ 'vec': 'Venetian',
208
+ 'vi': 'Vietnamese',
209
+ 'vot': 'Votic',
210
+ 'xh': 'Xhosa',
211
+ 'yi': 'Yiddish',
212
+ 'yo': 'Yoruba',
213
+ 'yue': 'Cantonese',
214
+ 'zgh': 'Tamazight',
215
+ 'zh-CN': 'Chinese (China)',
216
+ 'zh-HK': 'Chinese (Hong Kong)',
217
+ 'zh-TW': 'Chinese (Taiwan)',
218
+ 'zu': 'Zulu',
219
+ }
220
+
221
+ FLEURS_LANGUAGES = {
222
+ 'af_za': 'Afrikaans',
223
+ 'am_et': 'Amharic',
224
+ 'ar_eg': 'Arabic',
225
+ 'as_in': 'Assamese',
226
+ 'ast_es': 'Asturian',
227
+ 'az_az': 'Azerbaijani',
228
+ 'be_by': 'Belarusian',
229
+ 'bg_bg': 'Bulgarian',
230
+ 'bn_in': 'Bengali',
231
+ 'bs_ba': 'Bosnian',
232
+ 'ca_es': 'Catalan',
233
+ 'ceb_ph': 'Cebuano',
234
+ 'ckb_iq': 'Sorani-Kurdish',
235
+ 'cmn_hans_cn': 'Mandarin Chinese',
236
+ 'cs_cz': 'Czech',
237
+ 'cy_gb': 'Welsh',
238
+ 'da_dk': 'Danish',
239
+ 'de_de': 'German',
240
+ 'el_gr': 'Greek',
241
+ 'en_us': 'English',
242
+ 'es_419': 'Spanish',
243
+ 'et_ee': 'Estonian',
244
+ 'fa_ir': 'Persian',
245
+ 'ff_sn': 'Fula',
246
+ 'fi_fi': 'Finnish',
247
+ 'fil_ph': 'Filipino',
248
+ 'fr_fr': 'French',
249
+ 'ga_ie': 'Irish',
250
+ 'gl_es': 'Galician',
251
+ 'gu_in': 'Gujarati',
252
+ 'ha_ng': 'Hausa',
253
+ 'he_il': 'Hebrew',
254
+ 'hi_in': 'Hindi',
255
+ 'hr_hr': 'Croatian',
256
+ 'hu_hu': 'Hungarian',
257
+ 'hy_am': 'Armenian',
258
+ 'id_id': 'Indonesian',
259
+ 'ig_ng': 'Igbo',
260
+ 'is_is': 'Icelandic',
261
+ 'it_it': 'Italian',
262
+ 'ja_jp': 'Japanese',
263
+ 'jv_id': 'Javanese',
264
+ 'ka_ge': 'Georgian',
265
+ 'kam_ke': 'Kamba',
266
+ 'kea_cv': 'Kabuverdianu',
267
+ 'kk_kz': 'Kazakh',
268
+ 'km_kh': 'Khmer',
269
+ 'kn_in': 'Kannada',
270
+ 'ko_kr': 'Korean',
271
+ 'ky_kg': 'Kyrgyz',
272
+ 'lb_lu': 'Luxembourgish',
273
+ 'lg_ug': 'Ganda',
274
+ 'ln_cd': 'Lingala',
275
+ 'lo_la': 'Lao',
276
+ 'lt_lt': 'Lithuanian',
277
+ 'luo_ke': 'Luo',
278
+ 'lv_lv': 'Latvian',
279
+ 'mi_nz': 'Maori',
280
+ 'mk_mk': 'Macedonian',
281
+ 'ml_in': 'Malayalam',
282
+ 'mn_mn': 'Mongolian',
283
+ 'mr_in': 'Marathi',
284
+ 'ms_my': 'Malay',
285
+ 'mt_mt': 'Maltese',
286
+ 'my_mm': 'Burmese',
287
+ 'nb_no': 'Norwegian',
288
+ 'ne_np': 'Nepali',
289
+ 'nl_nl': 'Dutch',
290
+ 'nso_za': 'Northern-Sotho',
291
+ 'ny_mw': 'Nyanja',
292
+ 'oc_fr': 'Occitan',
293
+ 'om_et': 'Oromo',
294
+ 'or_in': 'Oriya',
295
+ 'pa_in': 'Punjabi',
296
+ 'pl_pl': 'Polish',
297
+ 'ps_af': 'Pashto',
298
+ 'pt_br': 'Portuguese',
299
+ 'ro_ro': 'Romanian',
300
+ 'ru_ru': 'Russian',
301
+ 'sd_in': 'Sindhi',
302
+ 'sk_sk': 'Slovak',
303
+ 'sl_si': 'Slovenian',
304
+ 'sn_zw': 'Shona',
305
+ 'so_so': 'Somali',
306
+ 'sr_rs': 'Serbian',
307
+ 'sv_se': 'Swedish',
308
+ 'sw_ke': 'Swahili',
309
+ 'ta_in': 'Tamil',
310
+ 'te_in': 'Telugu',
311
+ 'tg_tj': 'Tajik',
312
+ 'th_th': 'Thai',
313
+ 'tr_tr': 'Turkish',
314
+ 'uk_ua': 'Ukrainian',
315
+ 'umb_ao': 'Umbundu',
316
+ 'ur_pk': 'Urdu',
317
+ 'uz_uz': 'Uzbek',
318
+ 'vi_vn': 'Vietnamese',
319
+ 'wo_sn': 'Wolof',
320
+ 'xh_za': 'Xhosa',
321
+ 'yo_ng': 'Yoruba',
322
+ 'yue_hant_hk': 'Cantonese Chinese',
323
+ 'zu_za': 'Zulu',
324
+ }