reab5555's picture
Update app.py
e765d79 verified
raw
history blame contribute delete
No virus
20.7 kB
import os
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from facenet_pytorch import InceptionResnetV1, MTCNN
import mediapipe as mp
from fer import FER
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.metrics import silhouette_score
from scipy.spatial.distance import cdist
import umap
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
import gradio as gr
import tempfile
import shutil
import subprocess
import fractions
# Suppress TensorFlow warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
tf.get_logger().setLevel('ERROR')
# Initialize models and other global variables
device = 'cuda' if torch.cuda.is_available() else 'cpu'
mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.999, 0.999, 0.999], min_face_size=100, selection_method='largest')
model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5)
emotion_detector = FER(mtcnn=False)
def frame_to_timecode(frame_num, original_fps, desired_fps):
total_seconds = frame_num / original_fps
hours = int(total_seconds // 3600)
minutes = int((total_seconds % 3600) // 60)
seconds = int(total_seconds % 60)
milliseconds = int((total_seconds - int(total_seconds)) * 1000)
return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}"
def get_face_embedding_and_emotion(face_img):
face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255
face_tensor = (face_tensor - 0.5) / 0.5
face_tensor = face_tensor.to(device)
with torch.no_grad():
embedding = model(face_tensor)
emotions = emotion_detector.detect_emotions(face_img)
if emotions:
emotion_dict = emotions[0]['emotions']
else:
emotion_dict = {e: 0 for e in ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']}
return embedding.cpu().numpy().flatten(), emotion_dict
def alignFace(img):
img_raw = img.copy()
results = face_mesh.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
if not results.multi_face_landmarks:
return None
landmarks = results.multi_face_landmarks[0].landmark
left_eye = np.array([[landmarks[33].x, landmarks[33].y], [landmarks[160].x, landmarks[160].y],
[landmarks[158].x, landmarks[158].y], [landmarks[144].x, landmarks[144].y],
[landmarks[153].x, landmarks[153].y], [landmarks[145].x, landmarks[145].y]])
right_eye = np.array([[landmarks[362].x, landmarks[362].y], [landmarks[385].x, landmarks[385].y],
[landmarks[387].x, landmarks[387].y], [landmarks[263].x, landmarks[263].y],
[landmarks[373].x, landmarks[373].y], [landmarks[380].x, landmarks[380].y]])
left_eye_center = left_eye.mean(axis=0).astype(np.int32)
right_eye_center = right_eye.mean(axis=0).astype(np.int32)
dY = right_eye_center[1] - left_eye_center[1]
dX = right_eye_center[0] - left_eye_center[0]
angle = np.degrees(np.arctan2(dY, dX))
desired_angle = 0
angle_diff = desired_angle - angle
height, width = img_raw.shape[:2]
center = (width // 2, height // 2)
rotation_matrix = cv2.getRotationMatrix2D(center, angle_diff, 1)
new_img = cv2.warpAffine(img_raw, rotation_matrix, (width, height))
return new_img
def extract_frames(video_path, output_folder, fps):
os.makedirs(output_folder, exist_ok=True)
command = [
'ffmpeg',
'-i', video_path,
'-vf', f'fps={fps}',
f'{output_folder}/frame_%04d.jpg'
]
try:
result = subprocess.run(command, check=True, capture_output=True, text=True)
print(f"FFmpeg stdout: {result.stdout}")
print(f"FFmpeg stderr: {result.stderr}")
except subprocess.CalledProcessError as e:
print(f"Error extracting frames: {e}")
print(f"FFmpeg stdout: {e.stdout}")
print(f"FFmpeg stderr: {e.stderr}")
raise
def get_video_info(video_path):
ffprobe_command = [
'ffprobe',
'-v', 'error',
'-select_streams', 'v:0',
'-count_packets',
'-show_entries', 'stream=nb_read_packets,r_frame_rate',
'-of', 'csv=p=0',
video_path
]
ffprobe_output = subprocess.check_output(ffprobe_command, universal_newlines=True).strip().split(',')
frame_rate, frame_count = ffprobe_output
frac = fractions.Fraction(frame_rate)
original_fps = float(frac.numerator) / float(frac.denominator)
frame_count = int(frame_count)
return frame_count, original_fps
def process_frames(frames_folder, aligned_faces_folder, frame_count, progress, batch_size):
embeddings_by_frame = {}
emotions_by_frame = {}
frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith('.jpg')])
for i in range(0, len(frame_files), batch_size):
batch_files = frame_files[i:i+batch_size]
batch_frames = []
batch_nums = []
for frame_file in batch_files:
frame_num = int(frame_file.split('_')[1].split('.')[0])
frame_path = os.path.join(frames_folder, frame_file)
frame = cv2.imread(frame_path)
if frame is not None:
batch_frames.append(frame)
batch_nums.append(frame_num)
if batch_frames:
# Detect faces in batch
batch_boxes, batch_probs = mtcnn.detect(batch_frames)
for j, (frame, frame_num, boxes, probs) in enumerate(zip(batch_frames, batch_nums, batch_boxes, batch_probs)):
if boxes is not None and len(boxes) > 0 and probs[0] >= 0.99:
x1, y1, x2, y2 = [int(b) for b in boxes[0]]
face = frame[y1:y2, x1:x2]
if face.size > 0:
aligned_face = alignFace(face)
if aligned_face is not None:
aligned_face_resized = cv2.resize(aligned_face, (160, 160))
output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
cv2.imwrite(output_path, aligned_face_resized)
embedding, emotion = get_face_embedding_and_emotion(aligned_face_resized)
embeddings_by_frame[frame_num] = embedding
emotions_by_frame[frame_num] = emotion
progress((i + len(batch_files)) / frame_count, f"Processing frames {i + 1} to {min(i + len(batch_files), frame_count)} of {frame_count}")
return embeddings_by_frame, emotions_by_frame
def cluster_embeddings(embeddings):
if len(embeddings) < 2:
print("Not enough embeddings for clustering. Assigning all to one cluster.")
return np.zeros(len(embeddings), dtype=int)
n_clusters = min(3, len(embeddings)) # Use at most 3 clusters
scaler = StandardScaler()
embeddings_scaled = scaler.fit_transform(embeddings)
kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
clusters = kmeans.fit_predict(embeddings_scaled)
return clusters
def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder):
for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
person_folder = os.path.join(organized_faces_folder, f"person_{cluster}")
os.makedirs(person_folder, exist_ok=True)
src = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg")
shutil.copy(src, dst)
def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, output_folder, num_components):
emotions = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']
person_data = {}
for (frame_num, embedding), (_, emotion_dict), cluster in zip(embeddings_by_frame.items(),
emotions_by_frame.items(), clusters):
if cluster not in person_data:
person_data[cluster] = []
person_data[cluster].append((frame_num, embedding, {e: emotion_dict[e] for e in emotions}))
largest_cluster = max(person_data, key=lambda k: len(person_data[k]))
data = person_data[largest_cluster]
data.sort(key=lambda x: x[0])
frames, embeddings, emotions_data = zip(*data)
embeddings_array = np.array(embeddings)
np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array)
reducer = umap.UMAP(n_components=num_components, random_state=1)
embeddings_reduced = reducer.fit_transform(embeddings)
scaler = MinMaxScaler(feature_range=(0, 1))
embeddings_reduced_normalized = scaler.fit_transform(embeddings_reduced)
timecodes = [frame_to_timecode(frame, original_fps, desired_fps) for frame in frames]
times_in_minutes = [frame / (original_fps * 60) for frame in frames]
df_data = {
'Frame': frames,
'Timecode': timecodes,
'Time (Minutes)': times_in_minutes,
'Embedding_Index': range(len(embeddings))
}
for i in range(num_components):
df_data[f'Comp {i + 1}'] = embeddings_reduced_normalized[:, i]
for emotion in emotions:
df_data[emotion] = [e[emotion] for e in emotions_data]
df = pd.DataFrame(df_data)
return df, largest_cluster
class LSTMAutoencoder(nn.Module):
def __init__(self, input_size, hidden_size=64, num_layers=2):
super(LSTMAutoencoder, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, input_size)
def forward(self, x):
outputs, (hidden, _) = self.lstm(x)
out = self.fc(outputs)
return out
def lstm_anomaly_detection(X, feature_columns, num_anomalies=10, epochs=100, batch_size=64):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
X = torch.FloatTensor(X).to(device)
# Ensure X is 3D (batch, sequence, features)
if X.dim() == 2:
X = X.unsqueeze(0)
elif X.dim() == 1:
X = X.unsqueeze(0).unsqueeze(2)
elif X.dim() > 3:
raise ValueError(f"Input X should be 1D, 2D or 3D, but got {X.dim()} dimensions")
print(f"X shape after reshaping: {X.shape}")
train_size = int(0.85 * X.shape[1])
X_train, X_val = X[:, :train_size, :], X[:, train_size:, :]
model = LSTMAutoencoder(input_size=X.shape[2]).to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters())
for epoch in range(epochs):
model.train()
optimizer.zero_grad()
output_train = model(X_train)
loss_train = criterion(output_train, X_train.squeeze(0))
loss_train.backward()
optimizer.step()
model.eval()
with torch.no_grad():
output_val = model(X_val)
loss_val = criterion(output_val, X_val.squeeze(0))
model.eval()
with torch.no_grad():
reconstructed = model(X).squeeze(0).cpu().numpy()
# Compute anomalies for all features
mse_all = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1)
top_indices_all = mse_all.argsort()[-num_anomalies:][::-1]
anomalies_all = np.zeros(len(mse_all), dtype=bool)
anomalies_all[top_indices_all] = True
# Compute anomalies for components only
component_columns = [col for col in feature_columns if col.startswith('Comp')]
component_indices = [feature_columns.index(col) for col in component_columns]
if len(component_indices) > 0:
mse_comp = np.mean(np.power(X.squeeze(0).cpu().numpy()[:, component_indices] - reconstructed[:, component_indices], 2), axis=1)
else:
mse_comp = mse_all # If no components, use all features
top_indices_comp = mse_comp.argsort()[-num_anomalies:][::-1]
anomalies_comp = np.zeros(len(mse_comp), dtype=bool)
anomalies_comp[top_indices_comp] = True
return (anomalies_all, mse_all, top_indices_all,
anomalies_comp, mse_comp, top_indices_comp,
model)
def plot_anomaly_scores(df, anomaly_scores, top_indices, title):
fig, ax = plt.subplots(figsize=(16, 8))
bars = ax.bar(range(len(df)), anomaly_scores, width=0.8, color='skyblue')
for i in top_indices:
bars[i].set_color('red')
ax.set_xlabel('Timecode')
ax.set_ylabel('Anomaly Score')
ax.set_title(f'Anomaly Scores Over Time ({title})')
ax.xaxis.set_major_locator(MaxNLocator(nbins=100))
ticks = ax.get_xticks()
ax.set_xticklabels([df['Timecode'].iloc[int(tick)] if tick >= 0 and tick < len(df) else '' for tick in ticks], rotation=90, ha='right')
plt.tight_layout()
return fig
def plot_emotion(df, emotion, num_anomalies, color):
fig, ax = plt.subplots(figsize=(16, 8))
values = df[emotion].values
bars = ax.bar(range(len(df)), values, width=0.9, color=color)
top_indices = np.argsort(values)[-num_anomalies:][::-1]
for i in top_indices:
bars[i].set_color('red')
ax.set_xlabel('Timecode')
ax.set_ylabel(f'{emotion.capitalize()} Score')
ax.set_title(f'{emotion.capitalize()} Anomalies Over Time (Top {num_anomalies} in Red)')
ax.xaxis.set_major_locator(MaxNLocator(nbins=100))
ticks = ax.get_xticks()
ax.set_xticklabels([df['Timecode'].iloc[int(tick)] if tick >= 0 and tick < len(df) else '' for tick in ticks], rotation=90, ha='right')
plt.tight_layout()
return fig
import base64
def get_random_face_sample(organized_faces_folder, largest_cluster, output_folder):
person_folder = os.path.join(organized_faces_folder, f"person_{largest_cluster}")
face_files = [f for f in os.listdir(person_folder) if f.endswith('.jpg')]
if face_files:
random_face = np.random.choice(face_files)
face_path = os.path.join(person_folder, random_face)
output_path = os.path.join(output_folder, "random_face_sample.jpg")
# Read the image and resize it to be smaller
face_img = cv2.imread(face_path)
small_face = cv2.resize(face_img, (100, 100)) # Resize to NxN pixels
cv2.imwrite(output_path, small_face)
return output_path
return None
def process_video(video_path, num_anomalies, num_components, desired_fps, batch_size, progress=gr.Progress()):
output_folder = "output"
os.makedirs(output_folder, exist_ok=True)
with tempfile.TemporaryDirectory() as temp_dir:
aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces')
organized_faces_folder = os.path.join(temp_dir, 'organized_faces')
os.makedirs(aligned_faces_folder, exist_ok=True)
os.makedirs(organized_faces_folder, exist_ok=True)
progress(0.1, "Extracting frames")
frames_folder = os.path.join(temp_dir, 'extracted_frames')
extract_frames(video_path, frames_folder, desired_fps)
progress(0.2, "Getting video info")
frame_count, original_fps = get_video_info(video_path)
progress(0.3, "Processing frames")
embeddings_by_frame, emotions_by_frame = process_frames(frames_folder, aligned_faces_folder, frame_count, progress, batch_size)
if not embeddings_by_frame:
return "No faces were extracted from the video.", None, None, None, None, None, None
progress(0.6, "Clustering embeddings")
embeddings = list(embeddings_by_frame.values())
clusters = cluster_embeddings(embeddings)
progress(0.7, "Organizing faces")
organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder)
progress(0.8, "Saving person data")
df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, temp_dir, num_components)
progress(0.9, "Performing anomaly detection")
feature_columns = [col for col in df.columns if col not in ['Frame', 'Timecode', 'Time (Minutes)', 'Embedding_Index']]
X = df[feature_columns].values
print(f"Shape of input data: {X.shape}")
print(f"Feature columns: {feature_columns}")
try:
anomalies_all, anomaly_scores_all, top_indices_all, anomalies_comp, anomaly_scores_comp, top_indices_comp, _ = lstm_anomaly_detection(X, feature_columns, num_anomalies=num_anomalies, batch_size=batch_size)
except Exception as e:
print(f"Error details: {str(e)}")
print(f"X shape: {X.shape}")
print(f"X dtype: {X.dtype}")
return f"Error in anomaly detection: {str(e)}", None, None, None, None, None, None
progress(0.95, "Generating plots")
try:
anomaly_plot_all = plot_anomaly_scores(df, anomaly_scores_all, top_indices_all, "All Features")
anomaly_plot_comp = plot_anomaly_scores(df, anomaly_scores_comp, top_indices_comp, "Components Only")
emotion_plots = [
plot_emotion(df, 'fear', num_anomalies, 'purple'),
plot_emotion(df, 'sad', num_anomalies, 'green'),
plot_emotion(df, 'angry', num_anomalies, 'orange'),
plot_emotion(df, 'happy', num_anomalies, 'darkblue'),
plot_emotion(df, 'surprise', num_anomalies, 'gold'),
plot_emotion(df, 'neutral', num_anomalies, 'grey')
]
except Exception as e:
return f"Error generating plots: {str(e)}", None, None, None, None, None, None, None, None, None
# Get a random face sample
face_sample = get_random_face_sample(organized_faces_folder, largest_cluster, output_folder)
progress(1.0, "Preparing results")
results = f"Top {num_anomalies} anomalies (All Features):\n"
results += "\n".join([f"{score:.4f} at {timecode}" for score, timecode in
zip(anomaly_scores_all[top_indices_all], df['Timecode'].iloc[top_indices_all].values)])
results += f"\n\nTop {num_anomalies} anomalies (Components Only):\n"
results += "\n".join([f"{score:.4f} at {timecode}" for score, timecode in
zip(anomaly_scores_comp[top_indices_comp], df['Timecode'].iloc[top_indices_comp].values)])
for emotion in ['fear', 'sad', 'angry', 'happy', 'surprise', 'neutral']:
top_indices = np.argsort(df[emotion].values)[-num_anomalies:][::-1]
results += f"\n\nTop {num_anomalies} {emotion.capitalize()} Scores:\n"
results += "\n".join([f"{df[emotion].iloc[i]:.4f} at {df['Timecode'].iloc[i]}" for i in top_indices])
return results, face_sample, anomaly_plot_all, anomaly_plot_comp, *emotion_plots
# Gradio interface
iface = gr.Interface(
fn=process_video,
inputs=[
gr.Video(),
gr.Slider(minimum=1, maximum=20, step=1, value=5, label="Number of Anomalies"),
gr.Slider(minimum=2, maximum=5, step=1, value=3, label="Number of Components"),
gr.Slider(minimum=1, maximum=30, step=1, value=20, label="Desired FPS"),
gr.Slider(minimum=1, maximum=64, step=1, value=16, label="Batch Size")
],
outputs=[
gr.Image(type="filepath", label="Random Face Sample of Most Frequent Person"),
gr.Textbox(label="Anomaly Detection Results"),
gr.Plot(label="Anomaly Scores (All Features)"),
gr.Plot(label="Anomaly Scores (Components Only)"),
gr.Plot(label="Fear Anomalies"),
gr.Plot(label="Sad Anomalies"),
gr.Plot(label="Angry Anomalies"),
gr.Plot(label="Happy Anomalies"),
gr.Plot(label="Surprise Anomalies"),
gr.Plot(label="Neutral Anomalies")
],
title="Facial Expressions Anomaly Detection",
description="""
This application detects anomalies in facial expressions and emotions from a video input.
It focuses on the most frequently appearing person in the video for analysis.
Adjust the parameters as needed:
- Number of Anomalies: How many top anomalies or high intensities to highlight
- Number of Components: Complexity of the facial expression model
- Desired FPS: Frames per second to analyze (lower for faster processing)
- Batch Size: Affects processing speed and memory usage
"""
)
if __name__ == "__main__":
iface.launch()