Spaces:
Sleeping
Sleeping
import re | |
import pandas as pd | |
import numpy as np | |
from time import perf_counter | |
import time | |
# Constants | |
EMPTY_THRESHOLD = 0.5 | |
LOW_COUNT_THRESHOLD = 2 | |
VALID_DATA_THRESHOLD = 0.5 | |
def print_dataframe_info(df, step=""): | |
num_columns = len(df.columns) | |
num_rows = len(df) | |
num_cells = num_columns * num_rows | |
print(f"{step}Dataframe info:") | |
print(f" Number of columns: {num_columns}") | |
print(f" Number of rows: {num_rows}") | |
print(f" Total number of cells: {num_cells}") | |
def check_and_normalize_column_headers(df): | |
print("Checking and normalizing column headers...") | |
df.columns = df.columns.str.lower().str.replace(' ', '_') | |
df.columns = [re.sub(r'[^0-9a-zA-Z_]', '', col) for col in df.columns] | |
print("Column names have been normalized.") | |
return df | |
def remove_empty_columns(df, threshold=EMPTY_THRESHOLD): | |
print(f"Removing columns with less than {threshold * 100}% valid data...") | |
return df.dropna(axis=1, thresh=int(threshold * len(df))) | |
def remove_empty_rows(df, threshold=EMPTY_THRESHOLD): | |
print(f"Removing rows with less than {threshold * 100}% valid data...") | |
return df.dropna(thresh=int(threshold * len(df.columns))) | |
def drop_rows_with_nas(df, threshold=VALID_DATA_THRESHOLD): | |
print(f"Dropping rows with NAs for columns with more than {threshold * 100}% valid data...") | |
valid_columns = df.columns[df.notna().mean() > threshold] | |
return df.dropna(subset=valid_columns) | |
def check_typos(df, column_name, threshold=2, top_n=100): | |
if df[column_name].dtype != 'object': | |
print(f"Skipping typo check for column {column_name} as it is not a string type.") | |
return None | |
print(f"Checking for typos in column: {column_name}") | |
try: | |
value_counts = df[column_name].value_counts() | |
top_values = value_counts.head(top_n).index.tolist() | |
def find_similar_strings(value): | |
if pd.isna(value): | |
return [] | |
return [tv for tv in top_values if value != tv and levenshtein_distance(value, tv) <= threshold] | |
df['possible_typos'] = df[column_name].apply(find_similar_strings) | |
typos_df = df[df['possible_typos'].apply(len) > 0][[column_name, 'possible_typos']] | |
typo_count = len(typos_df) | |
if typo_count > 0: | |
print(f"Potential typos found in column {column_name}: {typo_count}") | |
print(typos_df.head(10)) | |
return typos_df | |
else: | |
print(f"No potential typos found in column {column_name}") | |
return None | |
except Exception as e: | |
print(f"Unexpected error in check_typos for column {column_name}: {str(e)}") | |
return None | |
def levenshtein_distance(s1, s2): | |
if len(s1) < len(s2): | |
return levenshtein_distance(s2, s1) | |
if len(s2) == 0: | |
return len(s1) | |
previous_row = range(len(s2) + 1) | |
for i, c1 in enumerate(s1): | |
current_row = [i + 1] | |
for j, c2 in enumerate(s2): | |
insertions = previous_row[j + 1] + 1 | |
deletions = current_row[j] + 1 | |
substitutions = previous_row[j] + (c1 != c2) | |
current_row.append(min(insertions, deletions, substitutions)) | |
previous_row = current_row | |
return previous_row[-1] | |
def transform_string_column(df, column_name): | |
print(f"Transforming string column: {column_name}") | |
df[column_name] = df[column_name].str.lower() | |
df[column_name] = df[column_name].str.strip() | |
df[column_name] = df[column_name].str.replace(r'\s+', ' ', regex=True) | |
df[column_name] = df[column_name].str.replace(r'[^a-zA-Z0-9\s/:.-]', '', regex=True) | |
return df | |
def clean_column(df, column_name): | |
print(f"Cleaning column: {column_name}") | |
start_time = perf_counter() | |
if df[column_name].dtype == 'object': | |
typos_df = check_typos(df, column_name) | |
if typos_df is not None and len(typos_df) > 0: | |
print(f"Detailed typos for column {column_name}:") | |
print(typos_df) | |
df = transform_string_column(df, column_name) | |
elif pd.api.types.is_numeric_dtype(df[column_name]): | |
df[column_name] = pd.to_numeric(df[column_name], errors='coerce') | |
end_time = perf_counter() | |
print(f"Time taken to clean {column_name}: {end_time - start_time:.6f} seconds") | |
return df | |
def remove_outliers(df, column): | |
print(f"Removing outliers from column: {column}") | |
q1 = df[column].quantile(0.25) | |
q3 = df[column].quantile(0.75) | |
iqr = q3 - q1 | |
lower_bound = q1 - 1.5 * iqr | |
upper_bound = q3 + 1.5 * iqr | |
return df[(df[column] >= lower_bound) & (df[column] <= upper_bound)] | |
def calculate_nonconforming_cells(df): | |
return df.isna().sum().to_dict() | |
def get_numeric_columns(df): | |
return df.select_dtypes(include=[np.number]).columns.tolist() | |
def remove_duplicates_from_primary_key(df, primary_key_column): | |
print(f"Removing duplicates based on primary key column: {primary_key_column}") | |
return df.drop_duplicates(subset=[primary_key_column]) | |
def clean_data(df, primary_key_column, progress): | |
start_time = time.time() | |
process_times = {} | |
print("Starting data validation and cleaning...") | |
print_dataframe_info(df, "Initial - ") | |
nonconforming_cells_before = calculate_nonconforming_cells(df) | |
progress(0.1, desc="Normalizing column headers") | |
step_start_time = time.time() | |
df = check_and_normalize_column_headers(df) | |
process_times['Normalize headers'] = time.time() - step_start_time | |
progress(0.2, desc="Removing empty columns") | |
step_start_time = time.time() | |
df = remove_empty_columns(df) | |
print('2) count of valid rows:', len(df)) | |
process_times['Remove empty columns'] = time.time() - step_start_time | |
progress(0.3, desc="Removing empty rows") | |
step_start_time = time.time() | |
df = remove_empty_rows(df) | |
print('3) count of valid rows:', len(df)) | |
process_times['Remove empty rows'] = time.time() - step_start_time | |
progress(0.4, desc="Dropping rows with NAs") | |
step_start_time = time.time() | |
df = drop_rows_with_nas(df) | |
print('4) count of valid rows:', len(df)) | |
process_times['Drop rows with NAs'] = time.time() - step_start_time | |
column_cleaning_times = {} | |
total_columns = len(df.columns) | |
for index, column in enumerate(df.columns): | |
progress(0.5 + (0.2 * (index / total_columns)), desc=f"Cleaning column: {column}") | |
column_start_time = time.time() | |
df = clean_column(df, column) | |
print('5) count of valid rows:', len(df)) | |
column_cleaning_times[f"Clean column: {column}"] = time.time() - column_start_time | |
process_times.update(column_cleaning_times) | |
progress(0.7, desc="Removing outliers") | |
step_start_time = time.time() | |
numeric_columns = get_numeric_columns(df) | |
numeric_columns = [col for col in numeric_columns if col != primary_key_column] | |
for column in numeric_columns: | |
df = remove_outliers(df, column) | |
print('6) count of valid rows:', len(df)) | |
process_times['Remove outliers'] = time.time() - step_start_time | |
progress(0.8, desc="Removing duplicates from primary key") | |
step_start_time = time.time() | |
df = remove_duplicates_from_primary_key(df, primary_key_column) | |
print('7) count of valid rows:', len(df)) | |
print("Cleaning process completed.") | |
print_dataframe_info(df, "Final - ") | |
return df, nonconforming_cells_before, process_times |