Similarity_Search / src /api /services /embedding_service.py
amaye15
Feat - Progress updated
e0b1978
raw
history blame
5.3 kB
# from openai import AsyncOpenAI
# import logging
# from typing import List, Dict
# import pandas as pd
# import asyncio
# from src.api.exceptions import OpenAIError
# # Set up structured logging
# logging.basicConfig(
# level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
# )
# logger = logging.getLogger(__name__)
# class EmbeddingService:
# def __init__(
# self,
# openai_api_key: str,
# model: str = "text-embedding-3-small",
# batch_size: int = 100,
# ):
# self.client = AsyncOpenAI(api_key=openai_api_key)
# self.model = model
# self.batch_size = batch_size
# async def get_embedding(self, text: str) -> List[float]:
# """Generate embeddings for the given text using OpenAI."""
# text = text.replace("\n", " ")
# try:
# response = await self.client.embeddings.create(
# input=[text], model=self.model
# )
# return response.data[0].embedding
# except Exception as e:
# logger.error(f"Failed to generate embedding: {e}")
# raise OpenAIError(f"OpenAI API error: {e}")
# async def create_embeddings(
# self, df: pd.DataFrame, target_column: str, output_column: str
# ) -> pd.DataFrame:
# """Create embeddings for the target column in the dataset."""
# logger.info("Generating embeddings...")
# batches = [
# df[i : i + self.batch_size] for i in range(0, len(df), self.batch_size)
# ]
# processed_batches = await asyncio.gather(
# *[
# self._process_batch(batch, target_column, output_column)
# for batch in batches
# ]
# )
# return pd.concat(processed_batches)
# async def _process_batch(
# self, df_batch: pd.DataFrame, target_column: str, output_column: str
# ) -> pd.DataFrame:
# """Process a batch of rows to generate embeddings."""
# embeddings = await asyncio.gather(
# *[self.get_embedding(row[target_column]) for _, row in df_batch.iterrows()]
# )
# df_batch[output_column] = embeddings
# return df_batch
from openai import AsyncOpenAI
import logging
from typing import List, Dict
import pandas as pd
import asyncio
from src.api.exceptions import OpenAIError
# Set up structured logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
class EmbeddingService:
def __init__(
self,
openai_api_key: str,
model: str = "text-embedding-3-small",
batch_size: int = 10,
max_concurrent_requests: int = 10, # Limit to 10 concurrent requests
):
self.client = AsyncOpenAI(api_key=openai_api_key)
self.model = model
self.batch_size = batch_size
self.semaphore = asyncio.Semaphore(max_concurrent_requests) # Rate limiter
self.total_requests = 0 # Total number of requests to process
self.completed_requests = 0 # Number of completed requests
async def get_embedding(self, text: str) -> List[float]:
"""Generate embeddings for the given text using OpenAI."""
text = text.replace("\n", " ")
try:
async with self.semaphore: # Acquire a semaphore slot
response = await self.client.embeddings.create(
input=[text], model=self.model
)
self.completed_requests += 1 # Increment completed requests
self._log_progress() # Log progress
return response.data[0].embedding
except Exception as e:
logger.error(f"Failed to generate embedding: {e}")
raise OpenAIError(f"OpenAI API error: {e}")
async def create_embeddings(
self, df: pd.DataFrame, target_column: str, output_column: str
) -> pd.DataFrame:
"""Create embeddings for the target column in the dataset."""
logger.info("Generating embeddings...")
self.total_requests = len(df) # Set total number of requests
self.completed_requests = 0 # Reset completed requests counter
batches = [
df[i : i + self.batch_size] for i in range(0, len(df), self.batch_size)
]
processed_batches = await asyncio.gather(
*[
self._process_batch(batch, target_column, output_column)
for batch in batches
]
)
return pd.concat(processed_batches)
async def _process_batch(
self, df_batch: pd.DataFrame, target_column: str, output_column: str
) -> pd.DataFrame:
"""Process a batch of rows to generate embeddings."""
embeddings = await asyncio.gather(
*[self.get_embedding(row[target_column]) for _, row in df_batch.iterrows()]
)
df_batch[output_column] = embeddings
return df_batch
def _log_progress(self):
"""Log the progress of embedding generation."""
progress = (self.completed_requests / self.total_requests) * 100
logger.info(
f"Progress: {self.completed_requests}/{self.total_requests} ({progress:.2f}%)"
)