Spaces:
Running
Running
from crawl4ai.extraction_strategy import * | |
from crawl4ai.crawler_strategy import * | |
import asyncio | |
from pydantic import BaseModel, Field | |
url = r'https://openai.com/api/pricing/' | |
class OpenAIModelFee(BaseModel): | |
model_name: str = Field(..., description="Name of the OpenAI model.") | |
input_fee: str = Field(..., description="Fee for input token for the OpenAI model.") | |
output_fee: str = Field(..., description="Fee for output token for the OpenAI model.") | |
from crawl4ai import AsyncWebCrawler | |
async def main(): | |
# Use AsyncWebCrawler | |
async with AsyncWebCrawler() as crawler: | |
result = await crawler.arun( | |
url=url, | |
word_count_threshold=1, | |
extraction_strategy= LLMExtractionStrategy( | |
# provider= "openai/gpt-4o", api_token = os.getenv('OPENAI_API_KEY'), | |
provider= "groq/llama-3.1-70b-versatile", api_token = os.getenv('GROQ_API_KEY'), | |
schema=OpenAIModelFee.model_json_schema(), | |
extraction_type="schema", | |
instruction="From the crawled content, extract all mentioned model names along with their " \ | |
"fees for input and output tokens. Make sure not to miss anything in the entire content. " \ | |
'One extracted model JSON format should look like this: ' \ | |
'{ "model_name": "GPT-4", "input_fee": "US$10.00 / 1M tokens", "output_fee": "US$30.00 / 1M tokens" }' | |
), | |
) | |
print("Success:", result.success) | |
model_fees = json.loads(result.extracted_content) | |
print(len(model_fees)) | |
with open(".data/data.json", "w", encoding="utf-8") as f: | |
f.write(result.extracted_content) | |
asyncio.run(main()) | |