rdkulkarni commited on
Commit
c2951b3
·
1 Parent(s): b9968f6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +78 -2
app.py CHANGED
@@ -1,5 +1,81 @@
1
  import gradio as gr
2
- import predict as predict
 
 
 
3
 
4
- iface = gr.Interface(fn=predict, inputs=gr.inputs.Image(type='pil'), outputs=gr.outputs.Label(num_top_classes=3))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  iface.launch()
 
1
  import gradio as gr
2
+ #Import libraries
3
+ import torch
4
+ import torchvision.models as models
5
+ import json
6
 
7
+ #Import User Defined libraries
8
+ from neural_network_model import initialize_existing_models, build_custom_models, set_parameter_requires_grad
9
+ from utilities import process_image, get_input_args_predict
10
+
11
+ def predict(image_path, model, topk=5):
12
+
13
+
14
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
15
+ model.to(device)
16
+ model.eval()
17
+
18
+ tensor_img = torch.FloatTensor(process_image(image_path))
19
+ tensor_img = tensor_img.unsqueeze(0)
20
+ tensor_img = tensor_img.to(device)
21
+ log_ps = model(tensor_img)
22
+ result = log_ps.topk(topk)
23
+ if torch.cuda.is_available(): #gpu Move it from gpu to cpu for numpy
24
+ ps = torch.exp(result[0].data).cpu().numpy()[0]
25
+ idxs = result[1].data.cpu().numpy()[0]
26
+ else: #cpu Keep it on cpu for nump
27
+ ps = torch.exp(result[0].data).numpy()[0]
28
+ idxs = result[1].data.numpy()[0]
29
+
30
+ return (ps, idxs)
31
+
32
+ def process_input(image_path):
33
+ #0. Get user inputs
34
+ #in_arg = vars(get_input_args_predict())
35
+ #print("User arguments/hyperparameters or default used are as below")
36
+ #print(in_arg)
37
+ in_arg = {}
38
+ in_arg['gpu'] = 'gpu'
39
+ in_arg['save_dir'] = 'checkpoint-densenet121.pth'
40
+ in_arg['path'] = image_path
41
+ in_arg['top_k'] = 5
42
+
43
+ #1. Get device for prediction and Load model from checkpoint along with some other information
44
+ if in_arg['gpu'] == 'gpu' and torch.cuda.is_available():
45
+ device = torch.device("cuda")
46
+ checkpoint = torch.load(in_arg['save_dir'])
47
+ else:
48
+ device = "cpu"
49
+ checkpoint = torch.load(in_arg['save_dir'], map_location = device)
50
+ #print(f"Using {device} device for predicting/inference")
51
+
52
+ if checkpoint['arch_type'] == 'existing':
53
+ model_ft, input_size = initialize_existing_models(checkpoint['arch'], checkpoint['arch_type'], len(checkpoint['class_to_idx']),
54
+ checkpoint['feature_extract'], checkpoint['hidden_units'], use_pretrained=False)
55
+ elif checkpoint['arch_type'] == 'custom':
56
+ model_ft = build_custom_models(checkpoint['arch'], checkpoint['arch_type'], len(checkpoint['class_to_idx']), checkpoint['feature_extract'],
57
+ checkpoint['hidden_units'], use_pretrained=True)
58
+ else:
59
+ #print("Nothing to predict")
60
+ exit()
61
+
62
+
63
+ model_ft.class_to_idx = checkpoint['class_to_idx']
64
+ model_ft.gpu_or_cpu = checkpoint['gpu_or_cpu']
65
+ model_ft.load_state_dict(checkpoint['state_dict'])
66
+ model_ft.to(device)
67
+
68
+ #Predict
69
+ # Get the prediction by passing image and other user preferences through the model
70
+ probs, idxs = predict(image_path = in_arg['path'], model = model_ft, topk = in_arg['top_k'])
71
+
72
+ # Swap class to index mapping with index to class mapping and then map the classes to flower category labels using the json file
73
+ idx_to_class = {v: k for k, v in model_ft.class_to_idx.items()}
74
+ with open('cat_to_name.json','r') as f:
75
+ cat_to_name = json.load(f)
76
+ names = list(map(lambda x: cat_to_name[f"{idx_to_class[x]}"],idxs))
77
+
78
+ return names, probs
79
+
80
+ iface = gr.Interface(fn=process_input, inputs=gr.inputs.Image(type='pil'), outputs=gr.outputs.Label(num_top_classes=3))
81
  iface.launch()