Spaces:
Paused
Paused
Commit
ยท
b1e4c54
1
Parent(s):
940c671
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from model import create_effnetb2_model
|
5 |
+
from timeit import default_timer as timer
|
6 |
+
|
7 |
+
# Setup class names
|
8 |
+
with open("class_names.txt", "r") as f:
|
9 |
+
class_names = [food_name.strip() for food_name in f.readlines()]
|
10 |
+
|
11 |
+
# Create model
|
12 |
+
model, transforms = create_effnetb2_model(
|
13 |
+
num_classes=101,
|
14 |
+
)
|
15 |
+
|
16 |
+
# Load saved weights
|
17 |
+
model.load_state_dict(
|
18 |
+
torch.load(
|
19 |
+
f="09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth",
|
20 |
+
map_location=torch.device("cpu"), # load to CPU
|
21 |
+
)
|
22 |
+
)
|
23 |
+
|
24 |
+
# Create prediction code
|
25 |
+
def predict(img):
|
26 |
+
start_time = timer()
|
27 |
+
img = transforms(img).unsqueeze(0)
|
28 |
+
model.eval()
|
29 |
+
with torch.inference_mode():
|
30 |
+
pred_probs = torch.softmax(model(img), dim=1)
|
31 |
+
pred_labels_and_probs = {
|
32 |
+
class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))
|
33 |
+
}
|
34 |
+
pred_time = round(timer() - start_time, 5)
|
35 |
+
return pred_labels_and_probs, pred_time
|
36 |
+
|
37 |
+
|
38 |
+
# Create Gradio app
|
39 |
+
title = "FoodVision Big ๐๐"
|
40 |
+
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food into 101 different classes."
|
41 |
+
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
|
42 |
+
|
43 |
+
demo = gr.Interface(
|
44 |
+
fn=predict,
|
45 |
+
inputs=gr.Image(type="pil"),
|
46 |
+
outputs=[
|
47 |
+
gr.Label(num_top_classes=5, label="Predictions"),
|
48 |
+
gr.Number(label="Prediction time (s)"),
|
49 |
+
],
|
50 |
+
examples=[["examples/04-pizza-dad.jpeg"]],
|
51 |
+
interpretation="default",
|
52 |
+
title=title,
|
53 |
+
description=description,
|
54 |
+
article=article,
|
55 |
+
)
|
56 |
+
|
57 |
+
demo.launch()
|