rdkulkarni commited on
Commit
eaf690e
1 Parent(s): aa5e923

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +99 -0
app.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+ from pathlib import Path
3
+
4
+ from langchain.embeddings import OpenAIEmbeddings
5
+ from langchain.chat_models import ChatOpenAI
6
+ from langchain.prompts import ChatPromptTemplate
7
+ from langchain.schema import StrOutputParser
8
+ from langchain.document_loaders import (
9
+ PyMuPDFLoader,
10
+ )
11
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
12
+ from langchain.vectorstores.chroma import Chroma
13
+ from langchain.indexes import SQLRecordManager, index
14
+ from langchain.schema import Document
15
+ from langchain.schema.runnable import Runnable, RunnablePassthrough, RunnableConfig
16
+
17
+ import chainlit as cl
18
+
19
+
20
+ chunk_size = 1024
21
+ chunk_overlap = 50
22
+
23
+ embeddings_model = OpenAIEmbeddings()
24
+
25
+ PDF_STORAGE_PATH = "./pdfs"
26
+
27
+
28
+ def process_pdfs(pdf_storage_path: str):
29
+ pdf_directory = Path(pdf_storage_path)
30
+ docs = [] # type: List[Document]
31
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
32
+
33
+ for pdf_path in pdf_directory.glob("*.pdf"):
34
+ loader = PyMuPDFLoader(str(pdf_path))
35
+ documents = loader.load()
36
+ docs += text_splitter.split_documents(documents)
37
+
38
+ doc_search = Chroma.from_documents(docs, embeddings_model)
39
+
40
+ namespace = "chromadb/my_documents"
41
+ record_manager = SQLRecordManager(
42
+ namespace, db_url="sqlite:///record_manager_cache.sql"
43
+ )
44
+ record_manager.create_schema()
45
+
46
+ index_result = index(
47
+ docs,
48
+ record_manager,
49
+ doc_search,
50
+ cleanup="incremental",
51
+ source_id_key="source",
52
+ )
53
+
54
+ return doc_search
55
+
56
+
57
+ doc_search = process_pdfs(PDF_STORAGE_PATH)
58
+ model = ChatOpenAI(model_name="gpt-4", streaming=True)
59
+
60
+
61
+ @cl.on_chat_start
62
+ async def on_chat_start():
63
+ template = """Answer the question based only on the following context:
64
+
65
+ {context}
66
+
67
+ Question: {question}
68
+ """
69
+ prompt = ChatPromptTemplate.from_template(template)
70
+
71
+ def format_docs(docs):
72
+ return "\n\n".join([d.page_content for d in docs])
73
+
74
+ retriever = doc_search.as_retriever()
75
+
76
+ runnable = (
77
+ {"context": retriever | format_docs, "question": RunnablePassthrough()}
78
+ | prompt
79
+ | model
80
+ | StrOutputParser()
81
+ )
82
+
83
+ cl.user_session.set("runnable", runnable)
84
+
85
+
86
+ @cl.on_message
87
+ async def on_message(message: cl.Message):
88
+ runnable = cl.user_session.get("runnable") # type: Runnable
89
+
90
+ msg = cl.Message(content="")
91
+ await msg.send()
92
+
93
+ async for chunk in runnable.astream(
94
+ message.content,
95
+ config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
96
+ ):
97
+ await msg.stream_token(chunk)
98
+
99
+ await msg.update()