rdjarbeng commited on
Commit
b9ddd64
·
1 Parent(s): fa2552e

export with nbdev

Browse files
Files changed (1) hide show
  1. app.py +35 -4
app.py CHANGED
@@ -1,7 +1,38 @@
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
2
+
3
+ # %% auto 0
4
+ __all__ = ['learn', 'categories', 'image', 'label', 'examples', 'intf', 'is_cat', 'classify_image']
5
+
6
+ # %% app.ipynb 2
7
+ from fastai.vision.all import *
8
+ import PIL
9
+ import pathlib
10
  import gradio as gr
11
 
 
 
12
 
13
+ def is_cat(x): return x[0].isupper()
14
+
15
+ # %% app.ipynb 4
16
+ # Check if you are on a Windows system
17
+ if sys.platform == 'win32':
18
+ # Set the base PosixPath to WindowsPath
19
+ pathlib.PosixPath = pathlib.WindowsPath
20
+ pathlib.PosixPath
21
+
22
+ # %% app.ipynb 5
23
+ learn =load_learner('cat_dog_model.pkl')
24
+
25
+ # %% app.ipynb 7
26
+ categories= ('Dog', 'Cat')
27
+
28
+ def classify_image(img):
29
+ pred,idx, probs = learn.predict(img)
30
+ return dict(zip(categories, map(float,probs)))
31
+
32
+ # %% app.ipynb 9
33
+ image = gr.Image(height=192,width=192)
34
+ label = gr.Label()
35
+ examples =['dog.jpg', 'cats.jpeg', 'dogs.png']
36
+
37
+ intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
38
+ intf.launch(inline=False)